摘要— 高时间分辨率和不对称空间激活是脑电图 (EEG) 的基本属性,是大脑情绪过程的基础。为了学习 EEG 的时间动态和空间不对称性以实现准确和广义的情绪识别,我们提出了 TSception,这是一种可以从 EEG 中对情绪进行分类的多尺度卷积神经网络。TSception 由动态时间、不对称空间和高级融合层组成,它们同时学习时间和通道维度中的判别表示。动态时间层由多尺度 1D 卷积核组成,其长度与 EEG 的采样率有关,它学习 EEG 的动态时间和频率表示。不对称空间层利用情绪的不对称 EEG 模式,学习判别性全局和半球表示。学习到的空间表示将由高级融合层融合。使用更通用的交叉验证设置,在两个公开可用的数据集 DEAP 和 MAHNOB-HCI 上评估所提出的方法。将所提出的网络的性能与 SVM、KNN、FBFgMDM、FBTSC、无监督学习、DeepConvNet、ShallowConvNet 和 EEGNet 等先前报告的方法进行了比较。在大多数实验中,TSception 的分类准确率和 F1 分数高于其他方法。代码可在以下位置获得:https://github.com/yi-ding-cs/TSception
摘要 — 高时间分辨率和不对称空间激活是脑电图 (EEG) 的基本属性,是大脑情绪过程的基础。为了学习 EEG 的时间动态和空间不对称性以实现准确和广义的情绪识别,我们提出了 TSception,这是一种可以从 EEG 中对情绪进行分类的多尺度卷积神经网络。TSception 由动态时间、不对称空间和高级融合层组成,它们同时学习时间和通道维度中的判别表示。动态时间层由多尺度 1D 卷积核组成,其长度与 EEG 的采样率有关,它学习 EEG 的动态时间和频率表示。不对称空间层利用情绪的不对称 EEG 模式,学习判别性全局和半球表示。学习到的空间表示将由高级融合层融合。使用更通用的交叉验证设置,在两个公开可用的数据集 DEAP 和 MAHNOB-HCI 上评估所提出的方法。将所提出的网络的性能与 SVM、KNN、FBFgMDM、FBTSC、无监督学习、DeepConvNet、ShallowConvNet 和 EEGNet 等先前报告的方法进行了比较。在大多数实验中,TSception 的分类准确率和 F1 分数高于其他方法。代码可在以下位置获得:https://github.com/yi-ding-cs/TSception
在微电子领域,铜线越来越多地代替金线用于制作键合互连。在这些应用中使用铜有许多潜在的好处,包括更好的电气和机械性能以及更低的成本。通常,导线键合到铝接触垫上。然而,人们对导线/垫界面处 Cu/Al 金属间化合物 (IMC) 的生长了解甚少,如果过度生长,会增加接触电阻并降低键合可靠性。为了研究 Cu 球键合中 Cu/Al IMC 的生长,在 250 C 下高温老化长达 196 小时,以加速键合的老化过程。然后记录了 Cu/Al IMC 的生长行为,并获得了 6.2 ± 1.7 · 10 14 cm 2 /s 的 IMC 形成速率。除了垂直于键合界面的常规 yz 平面横截面外,还报告了平行于界面层的 xy 平面横截面。在光学显微镜下,在球键合 xy 平面横截面上,Cu/Al 界面处有三层 IMC 层,它们的颜色不同。微 XRD 分析结果证实,Cu 9 Al 4 和 CuAl 2 是主要的 IMC 产物,而发现第三相,可能是 CuAl。在老化过程中,IMC 膜从键合外围开始生长,并向内传播至中心区域。随后,随着老化时间的增加,在 IMC 层和 Cu 球表面之间观察到空洞,也是从键合外围开始。空洞最终连通并向中心区域发展,导致球和金属间层之间几乎完全断裂,这是 81 小时后观察到的。2007 Elsevier Ltd. 保留所有权利。
在LA 3 Ni 2 O 7(LNO)中发现高t C超导性(SC)引起了极大的关注。以前,有人提出NI-3 D Z 2轨道对于实现LNO中的高t c sc至关重要。其中预制的库珀对通过与3 d x 2 -y 2轨道的杂交获得相干性,形成SC。但是,我们持有不同的观点,即层间配对S -Wave SC是由3 d x 2 -y 2轨道诱导的,这是由强层间层互动相互作用驱动的。为了包括两个e g轨道的效果,我们建立了一个两轨双层t -j模型。我们的计算表明,由于无双重占用限制,3 d x 2-y 2频段和3 d z 2键带的分别被大约2和10的倍数,这与最近角度分辨的光发射镜头测量值一致。因此,由于难以发展相干性,因此在3 d z 2轨道中几乎无法诱导高温SC。但是,在逼真的相互作用强度下,3 d x 2 -y 2轨道可以很容易地实现。带有电子掺杂,3 d z 2个带逐渐潜入费米水平以下,但t c继续增强,这表明LNO中的高t c s s c s s s c c s s no不需要。带有孔掺杂,T C最初掉落然后上升,并伴随着从BCS到BEC型超导体过渡的交叉。
要计算WSE 2层的Moir´e电子结构,我们需要求解未介绍的TMD的K和-K谷(τ= 1和-1)周围的有效连续模型,然后将它们折叠到Moir'e Bz中s3(a),其中蓝色区域代表具有τ= 1的连续模型,红色区域代表带有τ= - 1的连续模型。这两个区域在动量空间中远距离分离,因此两个连续模型在单粒子水平上被解耦]。我们将Bz中的山谷表示为±K,而Moir´e Bz中的山谷为κ和κ'。为简单起见,我们还使用±k表示某处τ=±1的连续模型。为了获得Moir´e潜在参数(v I,φi),(i = V,c),我们使用自旋轨道耦合(SOC)来利用密度功能理论(DFT)软件VASP [6-8]来计算WSE 2 / WSE 2 / WS 2 HETEROBILAYER系统。Moir´e的电势作用在相应的价和配置带的D轨道上,可以解释为Valence带最大值(VBM)的变化,而传导带最小值(CBM)是Moir´e超级突出的位置R的函数。如上所述,可以将这些变化映射到VBM和CBM的变化,并在AA堆叠的WSE 2 / WS 2 BILAYER中具有不同的层间层中位移D,其扭曲角度为零。在此,我们计算了三个高对称堆叠配置的带状结构[5]。基于金属原子和相反层的金属原子和chalcogen原子的比对,将三种构造称为SE / W,AA和W / S。例如,SE / W表示顶层中的SE原子与底层中的W原子对齐。真空距离在平板模型中设置为20°A,并且在不同结构构造中的层间距离是通过
气候变化是一个紧迫的全球问题,可以通过使用电动汽车减少CO 2排放来部分解决。在这种情况下,高能和高功率密度电池至关重要。LINI 0.5 MN 1.5 O 4(LNMO)基于基于的单元在这方面吸引人,因为它满足了几种要求,但不幸的是受能力褪色的限制,尤其是在升高温度下。lnmo在〜4.7 V(vs. li + /li)下运行,其中传统的锂离子电池(LIB)电解质在热力学上不稳定。本文研究了LNMO细胞中的降解机制以及解决这些问题的各种实用策略。在第一部分中,开发了一种称为合成电荷的技术 - 伏安法(SCPV),以更好地了解某些常见电解质的氧化稳定性。第二部分着重于使用粘合剂的使用,这些粘合剂可能有可能在lnmo细胞中形成人造阴极 - 电解质相互作用。聚丙烯腈(PAN)通常被认为是氧化稳定的,但是在LNMO的工作电压下被证明会降解。研究了第二个聚合物(PAA)的第二个聚合物,用于较高的电极质量负荷,但与羧甲基纤维素(CMC)基准相比,高内部电阻导致初始放电能力较差。为了有效地减轻容量褪色,在第三部分的LNMO细胞中探索了三个不同的电解质。首先,使用了一种离子液体的电解质,1.2 M锂双(氟磺磺酰基)酰亚胺(LIFSI)在N-丙基N-甲基吡咯烷二(Fluorosulosulfonyl)Imide(Pyr 13 FSI)中被用于N-丙基-N-甲基吡咯烷二烯。X射线光电子光谱(XPS)分析表明,该电解质通过形成稳定的无机表面层来稳定电极,从而稳定电极。第二,对含硫烷的电解质的研究表明,尽管初始循环显示出较高的降解,但在电极上产生的钝化层仍能稳定循环。In a third study, tris(trimethylsilyl)phosphite (TMSPi) and lithium difluoro(oxalato)borate (LiDFOB) were investigated as electrolyte additives in a conventional electrolyte, and 1 wt.% and 2 wt.% of the additives, respectively, showed improved electrochemical performance in LNMO-graphite full cells, highlighting the role of these在正极和负电极处启用相间层的添加剂。总的来说,这些研究提供了有关界面化学对于LNMO细胞稳定运行的重要性的见解,并确定了进一步量身定制的策略。
去年的引言,东盟和日本与建立东盟 - 日本综合战略伙伴关系庆祝了他们对话关系成立50周年。这种关系的发展,最初被第二次世界大战期间日本的占领和暴行的痛苦记忆所掩盖,以及对1960年代和1970年代日本经济扩张的关注,其特征在于,其特征是深层的战略信任和相互依存的依赖性,这是一个了不起的成就。由于东南亚的前瞻性和务实的方法,这种转变已成为可能,该方法优先考虑其安全和发展需求,而不是过去的创伤。它也经过数十年的日本战略保证,经济订婚和持续的努力,成为一个坚定的朋友和一个好邻居。1在这一旅程中的一个里程碑是福生学说,它为日本与东南亚的当代关系奠定了基础。在1977年发起的反日情绪中,该学说诺言旨在日本追求和平与放弃军事统治,支持区域经济增长,并促进与东南亚国家的“心对心”平等伙伴关系。2今天,日本在东南亚的公众和精英圈中享有最高水平的信任,超过了所有其他主要大国。3这个成就归因于几个因素。第二,日本通过其投资,贸易关系和发展援助是东南亚经济上升的重要贡献。这些联系在历史上从未如此深刻。首先,日本通过积极参与和支持东盟多边主义及其成员国来塑造区域秩序,发挥了至关重要的作用,在美国脱离该地区的脱离,忽视或分散注意力的时期内,是稳定的力量。它是该地区最大的官方发展援助(ODA)提供商,该地区是其第四大贸易伙伴,以及其外国直接投资(FDI)的最佳来源。4另一个至关重要但经常被忽视的因素是日本和东南亚人之间人与人之间的联系的强度。自从福生学说以来,关系中的“心对心”维度不仅在政府间层面上实现,而且在社会和人际关系互动的更广泛的结构上也实现。5本文在三个维度上探讨了日本和东南亚之间不断扩展的人类联系,即(i)劳工合作; (ii)教育和人力资源发展; (iii)旅游和文化流动。认为,这些联系将为日本 - 南亚关系带来新的势头。值得注意的是,这些人的关系强调了东南亚对日本的重要性,超越了其作为日本产品和公司的市场和生产基地的传统作用。该地区正在成为维持日本经济增长的替代资源的水库,这表明双方之间朝着更加平衡和相互伙伴关系的转变。日本人口为1.224亿越来越多的共生劳动关系超出了贸易,援助和投资,日本和东南亚之间的共生大大扩展到劳动力部门。东南亚已成为日本越来越重要的劳动力,这种劳动力一直在应对由于人口老龄化和劳动力而造成的经济挑战。