与汽油汽车 (GC) 相比,电动汽车更加环保、节能且经济。然而,当前电动汽车的一个突出缺点是电池从空电状态到充满电需要很长的等待时间,而给 GC 充满电只需几分钟。在此背景下,美国能源部提出了“极限快速充电” (XFC) [2],具体要求充电时间为 15 分钟(4C 速率),以确保电动汽车的大规模普及。到目前为止,使用石墨负极和碳酸亚乙酯 (EC) 基电解质的商用 LIBs 不可能在没有锂镀层的情况下实现 XFC,因为与 Li/Li + 相比,石墨的工作电位在高倍率下很容易降至 0 V。[3] 人们进行了无数的尝试致力于石墨的结构改性以提高倍率性能,例如降低曲折度 [4] 和增加孔隙率。 [5] 然而,由于电池能量密度不可避免地会降低,这些以高功率换取低能量密度的尝试并不适合实际应用。另一方面,加速本体电解质中的 Li + 传输过程似乎是实现高动力学的有效方法 [6],而不会牺牲能量密度。低粘度的脂肪族酯 [7] 被用作
bis(氟磺磺酰基)伊映阴离子(FSI-),Alcl 4-,(BRCl)N-被探索为石墨互构化合物(GICS)的石墨互相中的介体物种。[3]由于直接电池配置,DIB已从Li [4]扩展到Na,[5] K,[6] mg,[7] Ca,[8],[8]和Zn Ion [9]系统。与有机或离子液体电解质不同,近来具有高安全性和低成本的水性电解质最近正在经历蓬勃发展的发育。[3F,10]尽管已经取得了显着的进展,但与DIB相关的关键challenge位于设备级别的低能量密度。以前的尝试增加了DIB的能量密度主要依赖于使用浓缩电解质[6,11]来减少非活性溶剂的重量比。然而,在超高集中,阴极侧的阳极污染只能在动力学上抑制。在DIB充电期间大多数电解质被计算时,这仍然是一个稳定问题。金属阳极的镀层效率也很大程度上取决于在浓缩电解质下形成的钝化相间。在先前的DIB原型中,始终需要过量的金属阳极和元素。最近,使用非活动基板作为当前收集器[12]开发了“无阳极” Li-Metal电池概念,它比Li Metal都更安全,更方便
锂离子电池 (LIB) 是当今许多高性能应用的首选储能设备。最近,人们对全球变暖和气候变化的担忧增加了电动汽车对锂离子电池的需求和要求,因此迫切需要更先进的技术和材料。在正在开发的阳极材料中,硅 (Si) 被认为是下一代锂离子电池最有希望的阳极候选材料,可取代广泛使用的石墨。Si 不能用作锂离子电池的电极,因此通常使用碳来实现硅在锂离子电池中的适用性。通常,这意味着形成 a-Si/碳复合材料 (Si/C)。高性能锂离子电池工业开发的主要挑战之一是开发低成本、环保、可持续和可再生的化学品和材料。在这方面,假设锂离子电池阳极的性能不受影响,生物基硅和碳有利于应对挑战。本综述论文重点介绍了来自各种生物源(特别是来自植物源生物质资源)的硅和碳阳极的开发。重点介绍了生物质前体、生产硅和碳的工艺/提取方法、影响 LIB 中锂存储的关键物理化学特性以及它们如何影响电化学性能。综述论文还讨论了生物质衍生材料在开发先进电池材料方面面临的当前研究挑战和前景。
引言“不是火箭科学”和“不是脑外科手术”是描述易于理解或执行的概念或任务的常见短语。其他短语,例如“这是小菜一碟”或“这是公园里的散步”具有类似的含义,但与航空航天行业和神经外科手术有关的两个词在与职业的关联中是独一无二的。1-3“这不是火箭科学”一词被认为起源于1950年代的美国,当时德国火箭科学家被带到了以支持发展的太空计划和军事火箭的设计,这两项工作都被认为是具有挑战性的。2到1970年代,“这不是火箭科学”开始出现在报纸文章中时,已经嵌入了美国文化中。2“不是脑外科手术”的起源并不清楚。很容易推测Polymath和Neurosurgeon Harvey Cushing的开创性技术吸引了公众的注意并颁布了短语。4
摘要:硅 (Si) 是一种很有前途的高能量密度锂离子电池 (LIBs) 阳极材料,但其较短的日历寿命和较差的循环性能阻碍了它的大规模应用。最近的研究表明,在电解质中引入镁 (Mg) 盐可以在 Si 锂化时形成三元 Li-Mg-Si Zintl 相并改善循环性能。然而,三元 Zintl 相的形成机理及其对固体电解质中间相 (SEI) 的影响尚不清楚。在这里,我们展示了通过 Mg 涂覆 Si 阳极形成三元 Li-Mg-Si Zintl 相,其中 Mg 在沉积时扩散到 Si 膜中并在锂化过程中进一步混合。Zintl 相的存在提高了界面稳定性,改变了 SEI 的性质并提高了 Si 阳极的循环性能。这项研究为三元 Zintl 相的形成机制提供了见解,并为未来 Si 阳极的设计提供了指导。
锂离子电池由于其高能量密度、优异的循环寿命和实惠的价格,已被广泛应用于消费产品和电动汽车。 [1,2] 然而,尽管锂离子电池中使用传统的石墨负极在循环过程中具有出色的稳定性,但由于其固有的低理论容量(372 mAh g 1 ),其循环容量受到限制。 因此,最近的研究主要集中在开发锂离子电池的高容量电极上,以满足当前消费者的需求。 因此,已经提出了许多新型负极材料来实现更好的循环性能。 特别是,过渡金属氧化物(例如Ni,Co,Fe等)作为用于锂离子电池的高容量负极而受到了广泛的关注,[3] 其中NiO因其高的理论容量(718 mAh g 1 )、可及性和价格实惠而受到特别的关注。然而,过渡金属氧化物仍有许多需要克服的限制,例如电子电导率低、初始库仑效率差、充电/放电过程中体积变化大,所有这些最终都会导致循环不稳定和能量密度损失。为了克服这些问题,可以使用多孔或纳米级过渡金属氧化物活性材料作为 LIB 阳极,以提供更大的表面积、充电/放电过程中的更低体积变化和更短的扩散路径。[4,5] 到目前为止,已经使用多种方法合成多孔纳米材料,包括气相沉积、[6] 脱合金、[7] 3D 打印、[8]
