Protocol Contributors Chief Investigator: Jean Abraham Trial Geneticist: Marc Tischkowitz Trial Statisticians: Nikos Demiris and Alimu Dayimu Trial Coordinators: Louise Grybowicz, = Erdem Demir, Karolina Lazarowicz, Camila Maidadepontes and Sonia Chukwuka Trial Pharmacist: Anita Chhabra Lead pathologist / UK Central Trial Pathologist: Elena Provenzano试验临床研究研究员:Karen Pinilla和Rebecca Lucey试验管理小组协议贡献者对遗传学感兴趣的医学肿瘤学家:Ellen Copson其他医学肿瘤学家:Anne Armstrong,Karen McAdam和Rebecca Roylance。主要病理学家 /英国中央试验学家:Elena Provenzano试验委员会试验管理小组首席研究人员独立外部临床医生(主席):Charlie Gourley独立数据和安全监测委员会3独立外部临床医生:Judy Garber(主席)(主席),Lajos Pusztai和Rita Nanda 1独立外部统计学和Brady Driviaf:Mark Bradiia
仅研究使用。不适用于诊断程序。©2024加利福尼亚州的太平洋生物科学(“ PACBIO”)。保留所有权利。本文档中的信息如有更改,恕不另行通知。PACBIO对本文档中的任何错误或遗漏不承担任何责任。某些通知,条款,条件和/或使用限制可能与您使用PACBIO产品和/或第三方产品有关。请参阅适用的PACBIO销售条款和条件以及PACB.com/license的适用许可条款。太平洋生物科学,PACBIO徽标,PACBIO,Circulomics,Omniome,Smrt,Smrtbell,Iso-Seq,Secel,Sequel,Nanobind,sbb,Revio,Revio,Onso,Apton,Apton,Kinnex和Puretarget是Pacbio的商标。
摘要:表皮生长因子受体 (EGFR) 在肿瘤进展和生存中的作用经常被低估。其表达和/或失调与乳腺癌的疾病进展和不良患者预后以及耐药性有关。EGFR 通常在乳腺癌中过表达,尤其是三阴性乳腺癌 (TNBC),目前缺乏分子靶点。我们研究了 EGFR 抑制剂 (EGFRi) 与阿霉素 (Dox) 联合在雌激素阳性 (ER+) MCF-7 和 MDA-MB-231 TNBC 细胞系中的协同潜力。MDA-MB-231 和 MCF-7 暴露于 EGFRi 产生的 IC 50 分别为 6.03 µ M 和 3.96 µ M。Dox 诱导 MDA-MB-231 (IC 50 9.67 µ M) 和 MCF-7 (IC 50 1.4 µ M) 细胞毒性。 EGFRi-Dox 组合显著降低了 MCF-7(0.46 µ M)和 MBA-MB 231(0.01 µ M)中的 IC 50。使用 Bliss 独立模型确认了两种细胞系中的协同药物相互作用。在 0.1–10 µ M EGFRi 和 Dox 单一处理下,MCF-7 中发生了促凋亡的 Caspase-3/7 激活,而 1 µ M Dox 对 MDA-MB-231 产生了更强的作用。EGFRi 和 Dox 单独和组合下调了 MCF-7 和 MDA-MB-231 中的 EGFR 基因表达(p < 0.001)。这项研究证明了 EGFRi 引发与 Dox 协同相互作用的潜力,导致两种细胞系中的生长抑制增强、凋亡诱导和 EGFR 下调。
背景:两种mangostin化合物,γ-糖蛋白和α-mangostin,通过抑制细胞增殖和细胞迁移而显示出抗癌的特性。转移性三阴性乳腺癌(TNBC)细胞,包括MDA-MB-231,高度表达的C-X-C趋化因子受体4型(CXCR4),以维持活性氧(ROS)和细胞迁移。目的:进行了这项研究,以分析和比较γ-蒙植物素和α-山基蛋白的不同作用模式为MDA -MB -231中CXCR4的抗移民作用,作为TNBC细胞的模型。方法:这项研究研究了使用一系列测定方法研究γ-超胞素和α-横轴蛋白的作用,包括细胞计数KIT-8(CCK-8)测定法对细胞毒性,伤口愈合测定,迁移研究,定量实时聚合酶链(QRT-PCR)的迁移和流动性分析的旋转式分析的迁移研究,并进行了脉冲分析。化合物和CXCR4之间的结合。结果:发现分别为γ -Mangostin和MDA -MB 231细胞中的γ -Mangostin和α -Mangostin的最大抑制浓度(IC50)值分别为25和20 µm。此外,将10 µm的浓度用于迁移测定。γ-山角蛋白和α-山臂蛋白都在24小时内显着抑制了细胞迁移。目前的基因表达研究表明,在γ-曼格汀治疗中,与α -Mangostin的关键基因,即Farp,CxCR4和LPHN2的下调,但不是α -Mangostin。此外,γ-山角蛋白和α-山角蛋白都增加了细胞ROS的产生,强调了γ-山角蛋白和α-山角蛋白ROS升高的相同作用,以抑制癌细胞迁移。分子对接模拟进一步表明γ-山臂蛋白和α -Mangostin与高亲和力的CXCR4之间存在潜在的相互作用。结论:这些发现表明,γ-山角蛋白和α -Mangostin都抑制了乳腺癌细胞的迁移并诱导MDA -MB -231细胞中的细胞ROS水平。值得注意的是,γ-Mangostin抑制了CXCR4 mRNA表达,这可能与其活性相关以抑制MDA-MB-231细胞迁移。
•评估委员会将再次开会,以考虑证据,该评估咨询文件和利益相关者的评论。•在该会议上,委员会还将考虑不是利益相关者的人的评论。•考虑了这些评论后,委员会将准备最终的指导草案。•在利益相关者的任何上诉中,最终指导草案可以用作NICE在英格兰NHS中使用Pembrolizumab与铂和氟吡啶基化学疗法的指导的基础。
含氮的芳族杂环化合物已被研究在各种ELDS中具有很好的应用。Quinoxaline是一种芳族杂环化合物,其结构由苯环和吡嗪环组成,将其凝结在一起。已研究了4,5个喹啉衍生物具有许多生物学活性,包括抗结核,抗菌,抗癌,抗内部抗药性,抗疟疾和抗呼吸症活性。5二氧素衍生物作为T2DM处理具有很大的潜力,其中包括DPP -4抑制剂,GLP -1受体激动剂,PPAR G和SUR EMONIST,A淀粉酶抑制剂和 - 葡萄糖苷酶抑制剂。4 - 11此外,异氧唑是一类叠氮唑,其结构含有氮和氧原子,中有含元素的芳族环。12这类化合物已被证明在药物化学中起重要作用,
乳腺癌 (BC) 是一种异质性疾病,其预后和治疗方案取决于雌激素、孕激素受体和人表皮生长因子受体 2 (HER-2) 状态。HER-2 阴性、内分泌非依赖性 BC 的治疗方案有限,在临床上面临巨大挑战。迄今为止,免疫检查点抑制剂等有前景的策略尚未在患者预后方面取得突破。尽管被认为是过时的,但来自天然来源(主要是植物)的药物仍然是当前治疗的支柱。在此背景下,我们批判性地分析了新型天然来源的候选药物,阐明了它们复杂的作用机制,并评估了它们在内分泌非依赖性 HER-2 阴性 BC 中的临床前体外和体内活性。由于临床前研究的成功往往与药物批准没有直接关系,我们专注于正在进行的临床试验以发现当前趋势。最后,我们展示了将抗体-药物偶联物或纳米药物等尖端技术与天然药物相结合的潜力,为利用传统细胞毒性药物和新代谢物提供了新的机会。
三重阴性乳腺癌(TNBC)代表了一种侵略性疾病,与治疗后的高风险相关,在转移性环境中预后不良。化学疗法一直是由于缺乏可行的靶标,在早期和转移性环境中可用的唯一治疗方法。临床实践发生了变化,随着在标准化疗中添加免疫疗法的结果,新型药物的发展[即抗体 - 药物结合物(ADC)],以及用于携带种系致病性乳腺癌易感基因(BRCA)1或BRCA 2变种的患者使用靶向治疗方法。自2021年7月以来,早期疾病的治疗在临床实践中发生了变化,在食品药品监督管理局(FDA)批准pembrolizumab之后,与化学疗法作为新辅助治疗TNBC的新辅助治疗,并在随后的佐剂环境中作为单一药物。免疫疗法的出现不仅解决了TNBC治疗中当前的挑战,而且还承诺了其治疗范式的根本性转化,增强了显着的临床结果,并为患有这种积极的乳腺癌形式的患者提供了新的观点。基于多种化学疗法和免疫检查点抑制剂(ICI)的结合,这种强化治疗的改善导致了短期和长期结局的改善,但它突出了一些新的未满足的临床需求,用于治疗早期TNBC:选择最有效的辅助治疗和pembrolizumab-the Capecipic caperies-the TrapeciTies-the Trapecipic caperic-the TrapeciTIC-the Trapeications [基于病理完全反应(PCR)的实现,核糖)聚合酶(PARP)抑制剂];鉴定预测性生物标志物可以选择可以从ICI增加,最大程度地减少毒性和最大化预后的患者;取消化疗的可能性,有利于免疫 - 康博或新型药物(例如ADC)的可能性;免疫疗法在雌激素受体(ER) - 低患者中的作用。
简介:肿瘤缺氧和入侵对光动力疗法(PDT)在三阴性乳腺癌(TNBC)中的功效提出了重大挑战。这项研究开发了一种线粒体靶向策略,该策略将PDT和基因治疗相结合,以相互促进并应对挑战。方法:带正电荷的两亲材材料三苯基二苯基 - 生育酚聚乙烯乙二醇琥珀酸酯(TPP-TPGS,TPS)和光敏剂氯化物E6(CE6)由Hydropolopic Itsaction形成TPS@CE6纳米颗粒(NPS)。他们静态凝结的microRNA-34A(miR-34a)形成稳定的TPS@CE6/miRNA NP。结果:首先,CE6破坏了溶酶体膜,然后通过TPS@CE6/miRNA NPS成功递送miR-34a。同时,miR-34a减少了ROS耗竭并进一步增强了PDT的有效性。因此,PDT和基因治疗之间的相互促进导致抗肿瘤作用增强。此外,TPS@CE6/miRNA NP通过下调caspase-3促进了凋亡,并通过下调N-钙粘着蛋白来抑制肿瘤细胞迁移和侵袭。此外,体外和体内实验表明,TPS@ce6/miRNA NP达到了出色的抗肿瘤作用。这些发现强调了通过PDT和基因治疗的协同作用增强的抗癌作用和肿瘤细胞迁移的降低。结论:综上所述,CE6和miR-34a的靶向共递送将促进光动力和基因纳米医学在治疗侵袭性肿瘤(尤其是TNBC)中的应用。关键词:光动力疗法,基因疗法,缺氧,入侵,线粒体靶标,三阴性乳腺癌
将细胞周期同步48小时,使用1 M甲氯酸酯释放细胞24小时。根据制造商的说明,我们使用了溴脱氧尿苷(BRDU)检测试剂盒(Roche细胞增殖ELISA,BRDU(化学发光)套件)。DRAQ7™(ABCAM,AB109202)添加到细胞中。HOECHST(Hoechst(Thermo Fisher Scientific™,Hoechst 33342溶液,Waltham MA)根据制造商的建议来对抗染色核。使用ImageXpress®PICO显微镜(Molecular Devices,San Jose,CA)对染色的细胞进行成像,并使用CellReporterXpress图像采集和分析软件进行分析。根据制造商的建议,使用了膜联蛋白V-PI(Invitrogen,Annexin v-Fitc结合物,Waltham MA)凋亡测定法,并通过流量