具有多种形态和浓度的电气晶石腔的间质阴离子电子(IAES)可以诱导有趣的物理和化学特性。了解IAES与电子 - Phonon耦合之间的相关性对于新电气超导体的发展至关重要。我们已经应用了第一个主要的结构搜索计算来预测新的高压li-as as tase his电气,例如p 6 / mmm li x as(x = 5和8),li 6,与cmc 2 1 and c 2 / c对称性一样结构对称性和受体物种)以探索与IAE相关的超导性。根据我们的结果,这些电气的预测超导温度与IAES的数量和连通性正相关。
要全面了解杂原子材料,既需要准确描述其短程结构,也需要了解促进或抑制特定短程有序的物理原理。这种机制理解对于技术相关材料尤其有价值,在这些材料中,促进或抑制特定局部结构模式的有针对性的合成方案可能允许优化关键材料特性。虽然许多阴离子无序杂阴离子材料的结构已被很好地表征,但阳离子无序杂阳离子材料的研究较少。对于杂阴离子材料,已经提出了各种通用设计规则来解释基于电子、应变或静电效应的部分或完全阴离子有序的具体例子。1,2,15,20然而,对于杂阳离子材料,指导短程有序偏好的因素尚不清楚。23
要全面了解杂原子材料,既需要准确描述其短程结构,也需要了解促进或抑制特定短程有序的物理原理。这种机械理解对于技术相关材料尤其有价值,其中促进或抑制特定局部结构模式的有针对性的合成方案可能允许优化关键材料特性。虽然许多阴离子无序异阴离子材料的结构已被充分表征,但 1,2,19 – 22 阳离子无序异阳离子材料的研究较少。对于异阴离子材料,已经提出了各种通用设计规则来解释基于电子、应变或静电效应的部分或完全阴离子有序的具体例子。1,2,15,20 然而,对于杂阳离子材料,影响短程有序偏好的因素尚不十分清楚。23
高选择性、速率提高和化学特异性是酶催化反应的特点,化学家们力求用合成催化剂模仿这些特点。1 与自然界的进化过程不同,小分子催化剂的合理而深思熟虑的设计需要精确的结构变化,理想情况下,这些变化可以对反应性和选择性产生可预测和合理的影响。在不对称催化领域,人们希望可靠地调整手性环境的空间和电子分布以影响反应的选择性,这导致广泛使用刚性的 C 2 对称配体和有机催化剂 2,而传统上人们认为灵活性是一种不受欢迎的特性。在这些系统中,经典的物理有机技术与通过密度泛函理论 (DFT) 定位过渡态 (TS) 结构相结合,已经成为理解选择性相互作用的常用方法。 3 对于传统手性催化剂,由于其相对不灵活性,因此可以进行计算研究,通常仅使用关键中间体和 TS 的最低能量结构来确定影响选择性的相互作用。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
在结肠中肠上皮细胞的腔膜中表达了阴离子交换器蛋白SLC26A3(在腺瘤中下调),在那里它促进了Cl-和草酸盐的吸收。我们先前鉴定出从SLC26A3细胞质表面起作用的SLC26A3抑制剂的4,8-二甲基氨基菜蛋白类,并在小鼠的便秘模型和高氧化尿症模型中证明了它们的功效。在此,对主要筛选的50,000种新化合物和1740种活性化合物的化学类似物筛选产生了五种新型的SLC26A3选择性抑制剂(1,3-二氧二氨基氨基氨基酰胺; n- n-; n-(5-磺胺1,3,3,4- thiAdiAdiAdiAzol-2- yl-yl-yl-yl-yl-yl-yl-yl-yl-pir); 3-羧基-2-苯基苯并呋喃和苯唑嗪-4-一个),IC 50降至100 nm。动力学冲洗和作用研究发作揭示了噻唑洛 - 吡啶二肽-5-one和3-羧基-2-苯基苯甲酰苯甲氟烷抑制剂的细胞外作用部位。分子对接计算显示这些抑制剂的假定结合位点。在小鼠的洛陶化胺模型中,口服的7-(2-氯 - 苯甲基甲基)-3-苯基噻唑洛洛[3,2-A]吡啶蛋白-5-酮(3A)显着增加了粪便的体重,颗粒的数量和水含量。SLC26A3具有细胞外部作用部位的抑制剂提供了可能在口服后产生最小的全身性暴露的非吸收性,发光作用抑制剂的可能性。我们的发现还表明,可以鉴定出具有细胞外作用部位的相关SLC26阴离子转运蛋白的抑制剂,以用于对选定上皮离子运输过程的药理调节。
摘要:Li-Excess电极材料有可能提高锂离子电池的能量密度,但是在阳离子隔离的岩石材料中,阴离子氧化还原材料的不稳定性的起源仍在争论中。在这项研究中,Li 3 NBO 4- COO的二元系统作为锂储存应用的电极材料。在此二进制系统中,化学计量lico 2/3 nb 1/3 o 2与NB离子的部分顺序结晶成岩石型结构。在增加Li 3 NBO 4馏分后,阳离子排序就会丢失,形成了阳离子隔离的岩石盐结构。尽管Li-Excess Li 4/3 CO 2/9 NB 4/9 O 2可以指出,电极材料的可逆能力很大,可转动性和电荷较大的电荷/放电曲线的较大电压滞后。在原位XRD测量的结果中也证明了电化学周期的不可逆转结构变化,这表明对于LI 4/3 CO 2/9 CO 2/9 NB 4/9 O 2,阴离子氧化还原不稳定。X射线吸收光谱表明,对于这些氧化物,在SRCOO 3中观察到的配体孔的部分稳定。配体孔对LI 7/6 CO 4/9 NB 7/18 O 2更有效地稳定,具有较少的Li-Excess和富含共同组成。通过对Li 3 NBO 4- COO的二进制系统进行系统研究,进一步讨论了影响可逆性的因素和阴离子氧化还原的不可逆性。■简介
对可再生能源的日益重视导致氢和电池研究的研发工作激增。阳极析氧反应 (OER) 周围的密集电化学环境困扰着催化层、基底和多孔传输层的活性和稳定性,最终影响这两个行业。在此,我们报告了电位循环 (PC) 316L 不锈钢毡多孔传输层 (PTL) 用于阴离子交换膜水电解的好处。如 SEM、EDS、XPS、XRD 和拉曼光谱所示,PC 增加了表面粗糙度并通过铁的氧化产生了 CrFe 5 Ni 2 -O x H y 层。在三电极设置中进行的 PC 后测试显示极化电阻下降了约 68%,这反映在其用作阴离子交换膜水电解器 (AEMWE) 中的阳极时的性能上。总体而言,在阳极条件下对 PTL 进行电位循环在 AEMWE 中测试时可提高性能。可以考虑对不锈钢阳极实施这种处理,以提高 AEMWE 性能。
b'lithium-o 2(li o 2)细胞是一类引人入胜的LI金属空气电池,具有最高的理论特异性能密度(3500 WHKG 1)。[1]尽管如此,直到他们的商业化成为现实,仍然需要漫长的旅程。从物质的角度来看,已经在开发更有效的电解质方面做出了许多努力,这些电解质符合广泛的属性,例如高离子电导率或更环保的电解质。[2]从这个意义上讲,由于良好的运输特性,非挥发性,低毒性的结合,离子液体(ILS)似乎是常规易燃有机溶剂的一个很好的替代品(请注意,需要仔细分析此特性),[3] [3]非耐受性和对超氧自由基的稳定性。[4,5]李O 2电池中研究最多的离子液体是基于咪唑 - 和吡咯烷菌的[4,6 \ xe2 \ x80 \ x939]和基于氟的牛灰(即bis(trifluororomethananesulfonyllfonyl)Imiide,tffone)。[10]最近,较少使用的四烷基铵基于ILS,例如N,N,N-二乙基-N-甲基-N-(2-甲氧亚乙基)BIS(三氟甲磺酰硫磺酰基)imide([Deme] [Deme] [deme] [tfsi]),已显示出适用于这种类型的彩色彩色彩色的物体。'
此外,当 TMO 充电至更高电压时,晶格氧可以参与阴离子氧化还原以补偿电荷。[15,16] 因此,氧化还原反应会在首次充电时贡献额外的容量。由于晶格结构内的氧损失,相关容量在接下来的循环中通常可逆性要低得多。[17-19] 此外,过渡金属离子可以在晶格氧氧化还原反应过程中迁移到钠离子层,导致层状 TMO 的结构变形。[20,21] 因此,高能量密度 SIB 正极设计需要了解层状 TMO 中的氧阴离子氧化还原活性,以更好地设计正极材料,提高氧化还原活性的可逆性,从而稳定循环性能。层状钠 TMO 的晶格氧氧化还原活性已通过多种原位或非原位技术进行了表征,例如拉曼光谱、X 射线光电子光谱和 X 射线吸收光谱。[22 – 24] 结果通常揭示有关充电或放电时表面氧局部电子态变化的信息。[18,25,26] 此外,了解本体(晶格)氧氧化还原活性对于解释相关的晶格结构变化和电化学过程的可逆性至关重要。