实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
9人类神经科学系,罗马萨皮恩扎大学,意大利罗马大学 *这些作者共享第一个作者的主要机构:“费德里科二世”,通过Pansini 5,80131 -Naples -Naples -Naples-意大利 - 通讯作者:通讯作者:Sirio Cocozza:Sirio Cocozza,Sirio Cocozza,M. - 意大利电子邮件:Sirio.cocozza@unina.it; Twitter:@neuron_lab电话:+390817462560。传真:+390817463527
摘要:对齐的纳米纤维(例如碳纳米管(CNT))的出色固有特性,以及它们易于形成成多功能的3D体系结构的能力,激励它们用于各种商业应用的使用,例如电池,用于环境监测的化学传感器以及能源监测和节能式载体。在控制对生长底物的纳米纤维粘附对于批量制造和设备性能是必不可少的,但迄今为止的实验方法和模型尚未解决CNT阵列 - 底物 - 底物粘附强度在热处理条件下。在这项工作中,可轻松的“一锅”热后生成处理(在温度下t p = 700 - 950°C)用于研究CNT-底物 - 底物提取强度,用于毫米高的对准CNT阵列。CNT阵列通过拉伸测试从平坦生长基板(Fe /Al 2 O 3 /SiO 2 /Si Wafers)中取出,表明该阵列逐渐失败,类似于脆性微生物束的响应。在三个方案中,引进强度与T P非单调地演变,首先由于在CNT-catalyst界面上对无序碳的石墨化而首先增加10次,直至t p = 800°C,然后由于Fe催化为catly catalyst扩散到950°C而降低到弱界面,从而降低到弱界面,并降低了sudtration substration substration substrate and 2 o cystration and 2 o 3 cystration and 2 o 3 cystratization。失败发生在750°C以下的CNT-催化剂界面处发生,并且CNT在较高的T P加工后拉出期间自身破裂,在基板上留下了残留的CNT。形态学和化学分析表明,在所有制度中,Fe催化剂在撤离后仍保留在底物上。这项工作提供了对负责纳米纤维 - 底物粘附的界面相互作用的新见解,并允许调谐增加或降低应用程序的阵列强度,例如高级传感器,能量设备和纳米机电系统(NEMS)。关键字:碳纳米管,粘附,热处理,机械性能,界面行为,扫描传输电子显微镜■简介
摘要:微阵列是过去二十年的开拓性技术之一,并且在生物学的所有相关领域都表现出了重要性。他们被广泛探索以筛选,识别和获得对生物分子(单独或复杂解决方案)特征性状的见解。A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies.这篇评论的目的是探索自2018年以来的基于生物分子的微阵列应用程序的开发。在这里,我们涵盖了不同的印刷策略,底物表面修饰,生物分子固定策略,检测技术和基于生物分子的微阵列应用。2018 - 2022年期间着重于使用基于生物分子的微阵列识别生物标志物,病毒的检测,多种病原体的分化等。微阵列的一些潜在应用可能用于个性化医学,候选疫苗筛查,毒素筛查,病原体鉴定和翻译后修饰。
摘要:近年来,在应用和解码神经活动在药物筛查,疾病诊断和脑部计算机相互作用中的编码和解码应用方面的进展激增。为了克服大脑复杂性的限制以及体内研究的伦理考虑,已经提高了整合微功能设备和微电极阵列的神经芯片平台,这不仅可以自定义体外神经元的生长路径,而且还可以监测和调节碎屑生长的专用神经网络。因此,本文回顾了整合微流体设备和微电极阵列的芯片平台的发展历史。首先,我们回顾了高级微电极阵列和微流体设备的设计和应用。之后,我们介绍了神经芯片平台的制造过程。最后,我们重点介绍了这种类型的芯片平台的最新进展,作为脑科学和神经科学领域的研究工具,重点是神经药理学,神经系统疾病和简化的脑模型。这是对神经芯片平台的详细而全面的评论。这项工作旨在实现以下三个目标:(1)总结此类平台的最新设计模式和制造方案,为开发其他新平台提供了参考; (2)在神经病学领域概括了芯片平台的几个重要应用,这将吸引科学家在领域的注意; (3)提出了整合微流体设备和微电极阵列的神经芯片平台的发展方向。
摘要:可植入的微电极阵列(MEA)可以记录皮质神经元的电活动,从而允许脑机界面的发展。然而,MES显示在慢性条件下的记录功能降低,促使新型MEA的发展可以改善长期性能。传统的平面,基于硅的装置和超薄的无定形碳化硅(A-SIC)测量植入雌性Sprague-Dawley大鼠的运动皮层中,并在植入后进行每周的麻醉记录。在两种设备类型的植入周期中,比较了1至500 Hz记录的光谱密度和频道。最初,A-SIC设备和标准测量值的带有可比性。然而,在植入后整个16周内,标准测量值显示出体力和功率频谱密度均持续下降,而A-SIC的测量表现出更加稳定的性能。从植入后第6周到研究结束时,标准和A-SIC MEA之间的带能量和光谱密度之间的差异在统计学上是显着的。这些结果支持使用超薄的A-SIC测量来发展慢性,可靠的脑机界面。
量子物理和化学问题。 [1] 为此,世界各地的研究人员正致力于开发量子计算、量子模拟和量子传感。 [2] 这项技术的优势可能有助于解决一些影响深远的问题,如理解高温超导性、进一步实现处理器中晶体管的小型化以及预测新型药物的特性。 [3–5] 量子应用的基本单位是量子比特,一般来说,量子比特是一个具有两个或多个能级的系统,可以在一段有限的时间内进入相干叠加态,这段时间称为相干时间。 [6] 目前正在研究几种作为量子比特的系统,将它们的属性与特定的应用联系起来:用于量子通信的光子,[7] 用于量子计算的超导电路,[8,9] 和用于磁场量子传感的金刚石中的氮空位。 [10,11] 其他有趣的平台包括硅中的磷杂质、[12] 量子点、[13] 里德堡原子 [14] 和捕获离子。[15,16] 所有这些潜在的量子比特平台在作为独立单元工作时都表现出非凡的特性。然而,实现量子门需要将几个这样的单元耦合起来,而这具有挑战性。同样,由于缺乏能够在阵列中精确定位量子比特的制造工艺,它们的可扩展性也受到限制。[17] 必须满足这两个要求才能实现工作的量子装置,因此这是一项不简单的任务。分子自旋量子比特 (MSQ) 是一个很有前途的平台,可以应对这些挑战。[18–23] 分子是微观的量子物体,像原子一样,但其组成更灵活,具有在纳米级形成有序结构的巨大潜力。 [24,25] 由于其合成的多功能性,可以微调多个量子比特之间的相互作用 [26–28] 并修改配体壳以满足特定的实际需求,例如将量子比特转移到固体基底上或设备中。[4,29–32] 人们对 MSQ 的兴趣迅速增长,并在短时间内取得了有关化学设计与量子特性之间关系理解的显著成果。[33–41] 现在很明显,可以实现长的相干时间 [42–45] 并且可以设计多自旋能级系统,这要归功于量子门
1美国密歇根大学生物医学工程系,美国密歇根州安阿伯市,美国48109,美国2分子,蜂窝和发育生物学系,密歇根州密歇根州安阿伯市,密歇根州安阿伯市48019美国密西西比州安阿伯市,美国美国公里48109 5 5神经外科系,密歇根大学医学院,安阿伯,安·阿伯,密歇根州安阿伯市,美国48109,美国6日6神经病学系,密歇根大学医学院,密歇根大学,密歇根大学48109,美国,美国,美国纽约市,美国纽约市,美国48109.密歇根州医学院,美国密歇根州安阿伯市48019,美国9号电气工程与计算机科学系,密歇根大学,安阿伯,密歇根州安阿伯,密歇根州48109,美国美国10机器人计划,密歇根大学,安阿伯,安阿伯,密歇根州安阿伯市,密歇根州48109,美国48109,美国美国11号共同作者。∗作者应向谁解决任何信件。
块体金刚石的一个重要且特别有趣的应用领域是量子技术。超纯单晶 CVD 和 HPHT 金刚石晶体为承载带负电的氮空位 (NV − ) 中心提供了近乎理想的环境 [7],这是一种光致发光缺陷,可以作为量子比特运行,具有几乎无限的光稳定性。与 NV − 中心相关的电子自旋相关光致发光使其能够进行光学读出和初始化为已知状态。与 NV − 中心相关的物理学的发展推动了量子技术的进步,并促成了开创性的实验,例如量子计算 [8] 和量子通信的演示、[9] 在纳米尺寸体积中记录 NMR 光谱、[10] 活细胞中磁场的光学检测、[11] 和磁共振的光电片上检测。[12]