本文旨在描述当使用算法中电池内部阻抗的概念,这些方面的重点是表征锂离子(Li-ion)电池的健康(SOH)降解。第一部分提供了简短的文献综述,该综述将帮助读者解释典型的锂离子排放和/或退化测试的结果。本文的第二部分显示了在受控条件下在锂离子细胞上进行的加速降解实验的初步结果。结果显示,电化学阻抗光谱测试的变化可以与电池降解有关。在实施旨在在温度,电压和放电电流测量方面预测电池终止寿命(EOL)的算法时,这种知识可能具有很高的价值。
心血管疾病仍然是全球的一大负担,三分之一的死亡可归因于该疾病的后果。主要原因是动脉阻塞,而动脉阻塞通常无法检测。植入式医疗设备 (IMD)(如支架和移植物)通常用于重新打开血管,但随着时间的推移,这些设备也会再次阻塞。开发了一种血管生物传感器,可以报告细胞情况,并可安装在支架或移植物上进行远程报告。此外,该设备还设计用于接收可诱导受控细胞死亡(凋亡)的电流。组合诊断和治疗生物传感器将为治疗动脉粥样硬化和中心静脉通路等血管疾病带来变革。在这项工作中,开发了一种基于相同交叉电极 (IDE) 的细胞感应和细胞凋亡系统。结果表明,该设备可扩展,并且通过小型化 IDE,检测灵敏度得到提高。使用频率为 10 kHz 的连续阻抗测量来监测血管平滑肌细胞的凋亡,并使用荧光染料和活细胞成像来追踪细胞死亡率。
摘要 — 本文介绍了一种基于电阻抗传感的低成本便携式微流式细胞仪的开发和测试,用于在受控氧微环境下进行单细胞分析。该细胞仪系统基于 AD5933 阻抗分析仪芯片、微流控芯片和由定制 Android 应用程序操作的 Arduino 微控制器。对受镰状细胞病影响的人类红细胞 (RBC) 进行了代表性案例研究,以证明该细胞仪系统的能力。悬浮生物细胞的等效电路模型用于解释单个流动 RBC 的电阻抗。在正常血液中,细胞质电阻和膜电容不会随着氧张力的变化而显着变化。相反,受镰状细胞病影响的 RBC 显示,在缺氧治疗后,细胞质电阻从 11.6 M Ω 降低到 23.4 M Ω,膜电容从 1.1 pF 降低到 0.8 pF。单细胞亚细胞电成分的变化与缺氧治疗引起的细胞镰状过程之间存在很强的相关性。本文报告的代表性结果表明,单细胞电阻抗可用作量化细胞对氧浓度变化反应的敏感生物物理标记。开发的流式细胞术系统和方法还可以扩展到分析其他细胞类型对缺氧的反应。索引术语——电阻抗、微流式细胞术、单细胞分析、缺氧、镰状细胞病I. 引言缺氧(体内缺氧)会导致细胞发生各种生理变化。在全身和单细胞水平上,人们对高海拔或深海潜水引起的缺氧生理反应或病理反应进行了广泛的研究 [1, 2]。单细胞悬浮液的分析已经成为重要的医学兴趣。细胞对缺氧反应的研究为肿瘤病理学 [3]、癌症治疗 [4]、心血管病理生理学 [5]、代谢 [6, 7] 和哺乳动物细胞的稳态机制 [8] 提供了见解。测量细胞缺氧和缺氧环境反应的黄金标准是通过流式细胞术分析单个细胞,测量蛋白质水平,例如缺氧诱导因子 1-alpha (HIF1 α ) 和 BCL2/腺病毒 E1B 19 kDa 蛋白相互作用蛋白 3 (BNIP3) [9, 10]。该方法通过基于抗体的免疫染色针对目标蛋白质提供高特异性,但也需要固定和透化所分析的细胞。最近,基于电阻抗的流式细胞术已被证明是分析单个细胞的传统光学方法的替代方法。它本质上是定量的、非侵入性的和无标记的,
摘要 —与不带耦合电感的传统阻抗源网络相比,磁耦合阻抗源网络可以在较小的直通占空比下获得较高的电压增益,但无源元件和功率器件中的寄生电阻严重影响实际的电压增益,需要进行研究。本文推导并分析了三种不同情况下寄生电阻对磁耦合阻抗源网络电压增益的影响:第一,寄生电阻与输出等效电阻的电阻比不同,第二,不同的直通占空比,第三,不同的绕组比。首先,针对三种典型的磁耦合阻抗源网络——Trans-Z源、Г源和Y源网络,提出了考虑寄生电阻的广义等效电路模型。在此基础上,从数学上推导并讨论了上述三种不同情况下寄生电阻对电压增益的影响。并推导了同时考虑三种电阻比时的最大电压增益.最后,给出了具有代表性的仿真和实验结果来验证所提出的广义等效电路模型、相应的数学推导以及寄生电阻对磁耦合阻抗源网络的影响.
微型机器人属于微型机器人领域,尺寸为几厘米甚至几毫米。传统上,这些小型机器人通常由电池供电。电池会占用大量空间并导致系统笨重。将储能组件与机器人本身隔离是进一步缩小机器人尺寸的良好替代方案。这可以通过结合无线电力传输 (WPT) 技术来实现。然而,小型 WPT 的研究通常报告效率较低。本文的目的是通过采用谐振电感耦合和阻抗匹配技术为微型机器人提供一种高效的无线电力传输框架。将讨论理论和设计过程。然后,进行了一个简单的原型实验来验证提出的框架。结果表明,在 0.5 厘米的传输距离上实现了 35% 的传输效率。该框架还成功为 4 瓦微型机器人原型供电,传输效率约为 16%,其接收线圈位于发射线圈上方 3.5 厘米处。
b'听力测试纯音测听(听力测试)此测试确定您能听到声音的音量必须达到多大。测试期间,将以不同音量呈现低频和高频音调。您将被要求确认何时能够听到声音。测试将单独评估每个频率。测试将使用插入式耳机(放入耳道的泡沫插入物)、耳罩和/或耳后骨头进行。这允许测试确定听力问题是源于内耳故障(感音神经性听力损失)还是源于声波传输到内耳的问题(传导性听力损失)或两者兼而有之(混合性听力损失)。在许多情况下,有必要将声音或噪音引入未测试的耳朵。这种分散注意力的方式使听力学家能够确保在评估的耳朵中听到测试音。 (时间 20 到 30 分钟)言语听力测试 这些测试用于评估您的耳朵对所听到内容的理解能力。 通过耳机或扬声器呈现两组不同的单词列表。 一种测试以不同的响度级别管理单词列表。 它用于确定您的耳朵第一次接收语音的声级。(言语接收阈值) 第二组单词使用纯音听力检查中确定的阈值来设置呈现的声级。 这样,我们可以确定您的耳朵听到了这些单词。 然后,通过呈现一组单词,我们可以确定您的耳朵对所听到内容的理解能力。(言语辨别分数)(时间 15 到 20 分钟) 阻抗和声反射测试 这组测试用于评估中耳结构和听觉神经的声音传输特性、耳咽管的工作情况、中耳肌肉的工作情况以及中耳压力的状态。 将一个小耳塞插入耳道。耳中会传来低沉的嗡嗡声。嗡嗡声的响度可能有所不同,有时听起来可能很大。此外,还会引入微小的压力变化。这些测试中获得的信息不需要您的回应。(时间 15-20 分钟)'
虽然在许多情况下,最快的上升时间是理想的,但非常快的上升时间在某些情况下会在 TDR 测量中产生误导性的结果。例如,使用 35 ps 上升时间系统测试电路板上微带线的阻抗可提供出色的分辨率。但是,即使是当今使用的最高速逻辑系列也无法匹配 TDR 阶跃的 35 ps 上升时间。典型的高速逻辑系列(例如 ECL)的输出上升时间在 200 ps 到 2 ns 范围内。来自微带线中短截线或尖角等小不连续点的反射将非常明显,并且可能在 35 ps 的上升时间内产生较大的反射。在实际操作中,由具有 1 ns 上升时间的 ECL 门驱动的相同传输线可能会产生可忽略不计的反射。
Instituto de Acústica, CSIC。Serrano 144, 28006 Madrid (西班牙), iacpc24@ia.cetef.csic.es 摘要:由于尺寸与波长之比的限制,被动系统本质上无法在低频范围内提供吸收。另一方面,主动控制系统在低频下工作。然后可以设想一种混合被动-主动系统,它通过主动控制补充被动吸收器的低频范围。如果配置正确,这种混合系统能够提供宽带吸收。1.简介 主动控制系统可以与传统被动元件相结合,以提供宽带吸收,包括低频 [1-2]。被动吸收器可以由气腔前面的多孔层和不透水端壁组成。主动系统包括误差传感器、执行器和自适应控制器。如果误差传感器是被动层后面的麦克风,则主动系统会在气腔输入处释放压力 [3]。这通过压力释放提供主动控制器。另一方面,如果在气腔中有两个麦克风和一个反卷积电路,则可以分别测量入射和反射分量。取消气腔中反射分量的主动系统称为阻抗匹配器 [4]。主动系统的性能取决于被动元件的设计。Cobo 等人[5-6] 表明,当被动元件的阻抗减小时,阻抗匹配条件的主动吸收效果更佳。否则,只要被动元件设计得当,压力释放条件的效果会更好。因此,在实施混合被动-主动吸收系统之前,有必要通过适当的模型预测其性能。本文讨论了压力释放条件下的混合被动-主动吸收系统的理论建模和实验验证。被动元件可以是多孔层或微穿孔板 (MPP)。2.平面波混合吸收模型让我们考虑一个管道,其中平面波向下和向上传播。左侧某处的主要源在每一层产生入射平面波 A i 和反射平面波 B i ,如图 1 所示。管道另一侧的被动吸收器可以是多孔层,其声阻抗为 Z a ,传播常数为 Γ a ,厚度为 d ,也可以是 MPP ,其
选择 L 16 正交阵列 1 作为设计工具,用于评估 k 因子测试板系统中所有已确定的主要因素及其预期相互作用的影响。由于本研究的重点是推导用于估计目的的数学方程,因此正确定义实验布局以捕获所有变异源非常重要;即,当未解决的变异性最小化时,方程的准确性最高。正确定义实验后,根据矩阵准备适当的模型,并通过有限元分析热求解器 (ABAQUS) 进行处理。FEA 软件返回的典型数据集显示在表 2 的最右列中。进行统计分析,可以从完成的数据集中得出正交多项式方程。