1. M.Bourogaoui、H. Ben Attia Sethom、I. Slama Belkhodja,“可调速驱动器中的速度/位置传感器容错控制 - 综述”,ISA Transactions,Elsevier,第 64 卷,第 269-284 页,2016 年 9 月。2. M.Dagbagi、A. Hemdani、L. Idkhajine、MW Naouar、E. Monmasson 和 I. Slama Belkhodja,“在低成本 FPGA 中实现的基于 ADC 的嵌入式实时电源转换器模拟器 - 应用于并网电压源整流器的容错控制”,IEEE Transactions on Industrial Electronics,第 63 卷,第 7 期,第 825-865 页,2016 年 9 月。 2,第 1179 – 1190 页,2016 年。3. A.Damdoum、I. Slama-Belkhodja、M. Pietrzak-David 和 M. Debbou,“电网故障下双馈感应机抽水蓄能系统的低电压穿越策略”,Elsevier,可再生能源,第 95 卷,第 248-262 页,2016 年 9 月。4. M.Merai、MW Naouar、I. Slama-Belkhodja 和 E. Monmasson,“基于 FPGA 的三相并网转换器容错空间矢量滞后电流控制”,IEEE Trans. Indus. Electron. , 第 63 卷,第 11 期,第 7008-7017 页,2016 年。 5. H.Ben Abdelghani、A. Bennani Ben Abdelghani、F. Richardeau、J.-M. Blaquière、F. Mosser 和 I. Slama-Belkhodja,“三电平混合中性点钳位飞行电容转换器的容错拓扑和控制”,IET 电力电子杂志,第 9 卷,第 12 期,第 2350 页,2016 年。 6. M.Ben Saïd-Romdhane、MW Naouar、I. Slama-Belkhodja 和 E. Monmasson,“基于 LCL 滤波器的并网转换器的稳健有源阻尼方法”IEEE 电力电子学报,第 32 卷,第 9 期,第 7008-7017 页,2016 年。 6739 - 6750,2017 7. F.Mouelhi、H. Ben Attia-Sethom、I. Slama-Belkhodja、L. Miègeville 和 P. Guérin,“正常和受扰运行条件下住宅负载的快速事件检测算法”,欧洲电气工程杂志,第 18 卷,第 1-2 期,第 95-116 页,2016 年。 8. I.Ouerdani、H. Ben Abdelghani、A. Bennani Ben Abdelghani、D. Montesinos-Miracle 和 I. Slama-Belkhodja,“具有恒定开关频率的 3 级 NPC 转换器的空间矢量调制技术”,电力电子进展,第 2016 卷,文章 ID 6478751,13 页。 9. H.Ben Abdelghani、A. Bennani Ben Abdelghani、F. Richardeau、J.-M。 Blaquière、F. Mosser、I. Slama-Belkhodja,“三电平混合中性点钳位飞行电容转换器的容错拓扑和控制”,IET 电力电子学杂志,第 9 卷,第 12 期,第 2350 页 10. I.Ouerdani、A.Ben Abdelghani-Bennani、I. Slama-Belkhodja,“基于脉冲宽度调制的模块化多电平转换器策略的谐波分析”,国际可再生能源研究杂志 (IJRER),2016 年。 11. H.Ben Abdelghani、A. Bennani Ben Abdelghani、F. Richardeau、I. Ouerdani 和 I. Slama-Belkhodja,“用于高性能感应机驱动的混合三电平转换器”,电气系统杂志 JES,于 2016 年 12 月接受出版。
2.1 旋翼机气动声学 ................................................................................................................ 19 2.1.1 飞机模式 ................................................................................................................ 20 2.1.2 直升机模式 ................................................................................................................ 22 2.1.3 过渡模式 ................................................................................................................ 25 2.2 旋翼机声学数据处理技术 ............................................................................................. 26 2.2.1 信号滤波 ................................................................................................................ 27 2.2.2 采样率 ................................................................................................................ 28 2.2.3 信号平均 ................................................................................................................ 28 2.2.4 声学图 ................................................................................................................ 29 2.2.5 距离校正 ................................................................................................................ 30 2.2.6 旋翼飞行器的声学指标 ................................................................................................ 32
摘要 在本文中,我们在具有 CP 破坏相互作用的标准模型背景下,研究了三体 H → γ l ¯ l 衰变(l = e , μ , τ )的量子纠缠特性,该模型位于轻子汤川区。我们的目的是阐明最终光子、轻子和反轻子在相空间中的纠缠分布。这些罕见的希格斯玻色子衰变发生在 1 圈水平,通过计算并发度和研究贝尔非局域性,为研究三体系统中基本相互作用的量子关联提供了独特的机会。此外,我们还探讨了衰变后和自蒸馏现象。多体纠缠测度比二体情况下的纠缠测度具有更丰富的结构,因此在对撞机现象学中值得更多关注。在这一方面,我们分析了这些三体希格斯玻色子衰变的新可观测量,这些可观测量可以扩展到高能范围内的其他多粒子系统。我们发现纠缠在最终粒子之间表现出来,偶尔在特定的运动学配置中达到最大纠缠状态。此外,这些衰变通道对于贝尔非局域性测试很有前景,但这种可观测量中的 CP 效应被轻子质量抑制。
40 : a) 直升机模式 ( μ = 0.125, C T /σ = 0.075, α s = 0°, M AT = 0.770), b) 过渡模式 ( μ = 0.125, C T /σ = 0.0493,α s = -45°,MAT = 0.767),以及 c) 飞行模式 ( μ = 0.0328,C T /σ = 0.0549,α s = - 90°,MAT = 0.770)。................................................ . ……………………………… ...................... 49
四十年前,一群由哈佛大学教授、研究人员和从业人员组成的跨学科学者齐聚一堂,共同应对冷战期间最大的威胁:苏联和美国之间爆发核战争的担忧。今天,我们寻求重塑这种跨学科方法来应对新的威胁:网络空间冲突的风险。当今领导人面临的问题十分重大且多样:如何保护国家最关键的基础设施免受网络攻击;如何组织、训练和装备军队,以在未来发生网络冲突时取得胜利;如何阻止民族国家和恐怖分子对手在网络空间发动攻击;如何在发生网络冲突时控制升级;以及如何利用法律和政策手段减少国家攻击面,同时又不扼杀创新。这些只是推动我们工作的众多问题中的一小部分。贝尔弗中心网络项目的目标是成为对这些问题和相关问题进行严格且政策相关的研究的首要场所。
约翰·H·鲁贝尔口述历史访谈——JFK#2,09/09/70 管理信息 创建者:约翰·H·鲁贝尔 采访者:威廉·W·莫斯 采访日期:1970 年 9 月 9 日 采访地点:新泽西州西奥兰治 长度:59 页 个人简介 美国国防部国防研究与工程战略武器部助理主任,1959 年 - 1961 年;国防研究与工程部助理部长,1961 年 - 1962 年。 在这次采访中,鲁贝尔讨论了为国防部工作的承包商、通信卫星和导弹系统等问题。 部分访问开放 使用限制 根据 1973 年 5 月 23 日签署的赠与契约,这些材料的版权在受访者去世后转给美国政府。建议这些材料的用户确定他们希望发布的任何文件的版权状态。版权 美国版权法(美国法典第 17 章)管辖对受版权保护材料的影印或其他复制品的制作。在法律规定的某些条件下,图书馆和档案馆有权提供影印或其他复制品。这些规定条件之一是影印或复制品不得“用于除私人学习、学术或研究之外的任何其他目的”。如果用户请求影印或复制品,或之后将其用于超出“合理使用”范围的目的,则该用户可能要承担版权侵权责任。如果本机构认为履行订单会违反版权法,则本机构保留拒绝接受复印订单的权利。版权法将其保护范围扩大到以有形形式创作的未出版作品。有关版权的问题请直接咨询参考人员。 口述历史访谈记录 这些电子文档是根据约翰·肯尼迪图书馆研究室提供的记录创建的。使用光学字符识别扫描了这些记录,并根据原始记录校对了生成的文本文件。进行了一些格式更改。页码被标注在原始记录页面底部的位置。如果研究人员对准确性有任何疑虑,我们鼓励他们访问图书馆并查阅记录和采访录音。
为了安全地传递信息,信息的发送者和接收者需要拥有一个共享的密钥。量子密钥分发 (QKD) 是一种为此而提出的方案,它利用了量子力学定律。用户 Alice 和 Bob 通过量子信道以纠缠量子比特的形式交换量子信息,并通过经典信道交换测量信息。成功的 QKD 算法将确保当窃听者可以访问量子和经典信息信道时,他们无法推断出密钥,并且会被密钥生成器检测到。本文将介绍量子密钥分发,并解释使用纠缠贝尔态实现的 QKD 算法的模拟。将提出的 T22 协议与更常见的 BB84 QKD 协议进行了比较。结果表明,使用 T22 协议生成长度为 m 位的密钥所需的时间是 BB84 的 3 倍,但 T22 协议的安全性是 BB84 的 6 倍。
内窥镜检查和先进的治疗技术,确保NYU Langone Health仍然是复杂和创新程序的目的地。从学术上讲,我们将培养一种发现文化,以探索新颖的思想,工具和技术,并开发解决新标准的解决方案。作为内窥镜检查主管,您将与多样化的医师和员工团队紧密合作。您计划如何培养合作和增强患者护理?合作是医疗保健卓越的基石。我计划培养一种文化,无论是医生,护士还是支持人员,每个声音都受到重视,并有助于我们共同的出色患者护理使命。常规的多学科案例讨论,跨部门伙伴关系和透明的沟通将是基础的。此外,我们将实施精简的系统以提高效率,以确保患者及时且全面的护理。通过授权我们的团队提供应有的工具,资源和认可,我们可以共同实现非凡的成果。您希望优先考虑研究特定领域或临床重点吗?我的主要重点是进步治疗性内窥镜检查,包括最低侵入性的技术,例如内窥镜粘膜下剖消扫(ESD),多多内镜下肌切开术(Poem)和内窥镜缝合。
摘要 高质量 Greenberger–Horne–Zeilinger (GHZ) 状态的分布是许多量子通信任务的核心,从扩展望远镜的基线到秘密共享。它们还在分布式量子计算的纠错架构中发挥着重要作用,其中可以利用贝尔对来创建量子计算机的纠缠网络。我们研究了在量子网络上从非完美贝尔对中创建和提炼 GHZ 状态的过程。具体来说,我们引入了一种启发式动态规划算法来优化大量创建和净化 GHZ 状态的协议。所有考虑的协议都使用基于目标状态(即 GHZ 状态)非局部稳定算子测量的通用框架,其中每个非局部测量都会消耗另一个(非完美)纠缠态作为资源。在没有退相干和局域门噪声的情况下,新协议的表现优于以前的提案。此外,这些算法可以用于寻找涉及任意数量参与方和任意数量纠缠对的协议。
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。