Loading...
机构名称:
¥ 1.0

最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。

非阿贝尔费米子化和量子霍尔相的景观

非阿贝尔费米子化和量子霍尔相的景观PDF文件第1页

非阿贝尔费米子化和量子霍尔相的景观PDF文件第2页

非阿贝尔费米子化和量子霍尔相的景观PDF文件第3页

非阿贝尔费米子化和量子霍尔相的景观PDF文件第4页

非阿贝尔费米子化和量子霍尔相的景观PDF文件第5页

相关文件推荐

2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥3.0
2020 年
¥8.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥6.0
2021 年
¥1.0
2023 年
¥3.0
2023 年
¥1.0
2025 年
¥1.0
2020 年
¥7.0
2020 年
¥2.0
2020 年
¥5.0