2.7.3. GTO 双机发射的发射窗口 2.7.4. GTO 单机发射的发射窗口 2.7.5. 非 GTO 发射的发射窗口 2.7.6. 发射推迟 2.7.7. 升空前关闭发动机 2.8. 上升阶段的航天器定位 2.9. 分离条件 2.9.1. 定位性能 2.9.2. 分离模式和指向精度 2.9.2.1. 三轴稳定模式 2.9.2.2. 自旋稳定模式 2.9.3. 分离线速度和碰撞风险规避 2.9.4. 多重分离能力 第 3 章 环境条件 3.1. 一般要求 3.2. 机械环境 3.2.1. 静态加速度 3.2.1.1. 地面 3.2.1.2. 飞行中 3.2.2.稳态角运动 3.2.3. 正弦等效动力学 3.2.4. 随机振动 3.2.5. 声振动 3.2.5.1. 地面 3.2.5.2. 飞行中 3.2.6. 冲击 3.2.7. 整流罩下的静压 3.2.7.1. 地面 3.2.7.2. 飞行中 3.3. 热环境 3.3.1. 简介 3.3.2. 地面操作 3.3.2.1. CSG 设施环境 3.3.2.2. 整流罩或 SYLDA 5 下的热条件 3.3.3. 飞行环境 3.3.3.1. 整流罩抛弃前的热条件 3.3.3.2. 气动热通量和整流罩抛弃后的热条件 3.3.3.3. 其他通量 3.4. 清洁度和污染 3.4.1.环境中的洁净度 3.4.2. 沉积污染 3.4.2.1. 颗粒污染 3.4.2.2. 有机污染 3.5. 电磁环境 3.5.1. L/V 和范围 RF 系统 3.5.2. 电磁场 3.6. 环境验证
2.7.3.GTO 双发发射窗口 2.7.4.GTO 单发发射窗口 2.7.5.非 GTO 发射窗口 2.7.6.发射推迟 2.7.7.升空前发动机关闭 2.8.上升阶段的航天器定位 2.9.分离条件 2.9.1.定位性能 2.9.2.分离模式和指向精度 2.9.2.1.三轴稳定模式 2.9.2.2.自旋稳定模式 2.9.3.分离线速度和碰撞风险规避 2.9.4。多分离能力 第 3 章。环境条件 3.1。一般 3.2。机械环境 3.2.1。静态加速度 3.2.1.1。地面 3.2.1.2。飞行中 3.2.2。稳态角运动 3.2.3。正弦等效动力学 3.2.4。随机振动 3.2.5。声振动 3.2.5.1。地面 3.2.5.2.飞行中 3.2.6.冲击 3.2.7.整流罩下的静压 3.2.7.1.地面 3.2.7.2.飞行中 3.3.热环境 3.3.1.简介 3.3.2.地面操作 3.3.2.1.CSG 设施环境 3.3.2.2.整流罩或 SYLDA 5 下的热条件 3.3.3.飞行环境 3.3.3.1.整流罩抛射前的热条件 3.3.3.2。整流罩抛射后的气动热通量和热条件 3.3.3.3。其他通量 3.4。清洁度和污染 3.4.1。环境中的清洁度水平 3.4.2。沉积污染 3.4.2.1。颗粒污染 3.4.2.2。有机污染 3.5。电磁环境 3.5.1。L/V 和范围 RF 系统 3.5.2。电磁场 3.6。环境验证
前言 1.本标准已获准供国防部所有部门和机构使用。2.MIL-STD-331C 取代了 1989 年 12 月 1 日颁布的 MIL-STD-331B,包括所有变更通知。它是根据 MIL-STD-962C 制定的,符合国防部关于更多地使用商业产品和实践的政策。3.MIL-STD-331 是一种测试方法类型标准。多年来,其范围不断演变,反映了各军种间环境和性能测试标准化程度的提高以及引信设计、测试技术和安全性的改进。MIL-STD-331B 在很大程度上是一项编辑工作,旨在整合测试方法并重组标准。注意测试分组以及标准、替代和可选测试方法的使用,分别见第 5.2 节和第 5.4 节。4.在重组过程中,测试被重新编号。如果在引信规范和测试计划中仍引用旧测试编号,则包含表 I 以显示先前测试编号与新编号之间的对应关系。5.设计机构应注意,此标准的存在并不能免除他们定义引信在其生命周期内将暴露于何种环境的责任。此定义对于正确选择测试和识别任何所需的测试偏差至关重要。仅在测试指令中指定测试方法可能无法充分定义进行测试的条件。本标准中的许多测试方法包括允许针对特定引信设计、环境和用途进行定制的参数或选项。表 II 源于对正确调用测试方法的关注。在制定开发或生产规范和测试计划时,强烈建议使用表 II 并仔细审查整个测试方法。6.每个测试中的段落编号已修改为包括测试方法编号。虽然这会使编号更长,但现在标准中的每个段落都是唯一标识的。这是为了减少引用特定材料时的混淆。7.MIL-STD-331C 包括三项新测试(D6、D7 和 D8)和两项修订测试(F2.1 和 F4.1)。测试 D6,灌木冲击不射击测试已被纳入,以验证武装反装甲弹药的性能,证明它将穿透灌木丛等轻质树叶。8.9.10.试验 D7 ,迫击炮弹药引信双重装载试验已被纳入,以确定在双重装载的情况下,射弹引信的弹头轮廓是否可以引爆落在其上的子弹。试验 D8 ,渐进式保险试验已被纳入,以确定爆炸列车断路器的位置与爆炸转移概率之间的相关性。试验 B1.1 ,运输振动(裸露和包装引信),取代试验 B1 和 B2。它采用随机振动测试技术,可针对各种陆运、海运和空运场景进行定制。所有以前的正弦振动测试方法都已保留为 B1.6 节中的替代测试,并可能指定用于采购不符合随机振动测试计划要求的旧引信。经常使用本标准中包含的其他引信和爆炸物组件测试或测试变体的设计机构请将此信息提供给准备活动(见上文地址),以便可能纳入 MIL-STD-331。有关本文件的评论、建议或问题应发送至:美国陆军,研究、开发和工程司令部,军备研究、开发和工程中心,收件人:AMSTA-AAR-AIS-SS,新泽西州皮卡汀尼 07806-5000,或发送电子邮件至 ardec-stdzn@pica.army.mil 。由于联系信息可能会更改,您可能需要验证
混凝土结构的使用寿命不够长,而且失效现象十分常见。原因有两个:1)荷载的随机性,例如交通、自然灾害、环境和随机振动等荷载;2)材料特性和失效机制的不确定性。虽然前者已经取得了重大进展,但后者的进展直到最近才变得显著。混凝土结构的耐久性通常受到某些腐蚀的影响,这些腐蚀总是由宽度大于 0.1 毫米的裂缝发展引起,这些裂缝允许带有腐蚀性离子的水进入,从而控制使用寿命。历史上,大型桥梁发生失效事件的频率约为千分之一,这是不可接受的。一般认为,桥梁、核安全壳、飞机等的失效概率不得超过百万分之一,也就是被倒下的树木、闪电或野生动物击中而死亡的概率。因此,合理制定设计规范条款需要大量实验证据的推断。例如,在钢筋混凝土的剪切失效中,全球数据库包含约 800 个试验,但其中 95% 涉及 0.4 m 以下的截面深度,而实际发生的截面深度可达 15 m。对于控制桥梁和其他结构耐久性的混凝土徐变和收缩,现有数据库包含 50,000 多个数据点,但其中 96% 是通过 6 年试验获得的,99% 是通过 12 年试验获得的,而设计中通常规定 150 年的寿命。实验室测试和随机有限元代码无法提供低于 1/20 的故障概率信息,因此,如果没有间接验证的理论,就无法推断出 10 -6。本讲座认为,一种有效的扩展方法是确定规模、时间和风险范围两端的渐近定律。此类定律可以在范围的低端通过实验校准,比中间过渡简单得多。使用渐近匹配就足够了,这在流体力学中已经是一种长期常见的做法。渐近匹配可以采用多种方法,通过几个典型示例进行解释 - 1)准脆性和延性断裂缩放的尺寸效应定律,2)钢筋混凝土梁的缩放和剪切破坏,3)在水分扩散和长期水化存在下,混凝土的收缩、自生收缩、自干燥、膨胀和徐变的时间缩放,以及 4)基于交替串并联连接的概率模型将基本失效统计数据外推到失效概率 10 -6,该模型类似于对角拉的鱼网,并描述威布尔分布和高斯分布之间的过渡。