Elmos和ID Notique之间的合作伙伴关系结合了Elmos在高质量的半导体开发和生产方面的专业知识与ID Quontique在量子技术方面的领导。一起,他们正在开发一个2 mm x 2 mm QRNG模块,使其成为世界上最小的量子随机数发生器。早期原型确认IC提供了具有超低功耗和极短的启动时间的出色成本表现比。此QRNG技术允许可扩展的关键率,并将作为独立IC或知识产权(IP)许可提供,以扩大其在各个行业和CMOS技术的应用。这项合作强调了Elmos和ID Quontique在网络安全领域对创新的承诺。凭借他们的解决方案,双方都为建立安全的数字基础设施做出了重要的贡献,用于汽车,通信和物联网行业,以确保量子时代的长期安全。
IQ-PARC 团队于 2020 年夏季通过教师专业发展 (TPD) 研讨会启动了将量子集成到 K-12 科学教育课程中的计划。到目前为止,一篇介绍量子密钥分发量子密码方法的杂志文章发表在《科学教师》(Akdemir 等人,2021 年)上。一年后,又组织了一次 TPD,向中学科学教师介绍量子随机数以及量子计算机与传统计算机的对比。该课程由物理和 K-12 教育专业的研究生开发,然后中学教师被邀请参加 2022 年夏季研讨会,讨论课程与印第安纳州 2016 年和 2022 年学术标准的兼容性。教师的反馈和建议被采纳以改进课程内容,以比较自然界放射性衰变过程与量子信息处理之间的随机性/概率概念。在研讨会结束时,教师能够创作由真实量子随机二进制数生成的整体艺术作品。所有会议成果都记录在云平台中,并将与那些有兴趣将量子概念融入其课程的人分享。
4HE #$- 的建筑!移动系统 #-3 是基于三个功能组(服务资源、服务控制和服务管理组)开发的。在本文中,将从实现这些功能的角度讨论 #-3 体系结构:使用可变长度数据包进行传输;同步时钟信号来自 '03 接收器;功率控制采用开环和闭环技术;采用国际公认的信令和网络协议;主要服务的呼叫控制旨在提供高效的移动通信。电信服务 软手机在一张卡上实现 软硬手机中均采用移动辅助手机和网络辅助手机 认证基于包含随机数的秘密数据 实现包括位置管理、资源管理、小区边界管理和移动管理在内的管理功能 确保系统具有最大容量和高可靠性 架构确保系统灵活且可扩展,从而为用户提供经济实惠的和 EbCIENT 系统配置 4HE 动态功率控制自适应信道分配和动态小区边界管理建议在未来工作中
可验证延迟函数 (VDF) 是一种加密原语,设计用于在规定的时间 t 内进行计算,而不管可用的并行计算能力如何,同时在计算完成后仍然易于验证。VDF 用于各种应用,例如随机数生成和区块链共识算法,其中需要延迟以确保某些操作不会执行得太快。关于 VDF 的开创性论文“可验证延迟函数”于 2018 年由 Boneh、Bonneau、Bünz 和 Fisch 发表 [ 9 ]。在论文中,作者介绍了 VDF 的概念,并描述了它在拍卖协议、工作量证明系统和安全多方计算等各种应用中的潜在用途。第一个有效的 VDF 是由 Pietrzak [ 42 ] 和 Wesolowski [ 50 ] 提出的;这两个 VDF 都基于未知顺序群的幂运算。我们参考 [ 10 ] 对这些 VDF 进行了概述。在寻找一种同时具有量子抗性的 VDF 这一未解决的问题的驱动下,De Feo、Masson、Petit 和 Sanso [ 25 ] 使用超奇异同源链作为“顺序慢速”函数来构建他们的 VDF。然而,考虑到双线性配对的使用,这种基于同源的 VDF 不具有量子抗性,而只提供一些量子烦恼。证明同源性的知识
摘要 - 由于小包大小,经典数据保护方案不适合水下通信。本文解决了此问题,并包含两个主要结果。作为第一个结果,引入了一种适用于小消息大小的新的对称密钥加密协议。加密方案利用灵活的量子置换板(QPP)对称键块密码。它将QPP与块密码计数器模式和一个随机数生成器结合在一起,并带有共享秘密,以使QPP适应短的水下协议数据单位。加密和解密算法是定义的,在计数器模式下在QPP上构建。分析算法。分析表明该方案没有达到完美的不可区分性。但是,分析还表明消息碰撞概率可能非常低。该方案是通用和适应性的。作为第二个结果,新的对称加密方案适用于远程水下通信协议(发音您窃窃私语)UWSPR。与理论一致分析设计。还解决了相关的问题,例如关键大小和关键产生,以及水下环境所面临的挑战。关键字 - 水下通信,水下网络,安全性,机密性,加密,量子置换板,(发音您窃窃私语)UWSPR
从Origin开始“ O” Kissmig开始模拟“ IT”迭代的迁移,在以适合性层“ S”为特征的异质环境中步骤。原点“ O”的定殖细胞具有值1,未殖民的细胞值0。如果“ S”由几个适合性层组成以覆盖环境变化,则将其应用于每一层。适用性范围在0(不合适)和1(最大适合性)之间。Kissmig使用3x3算法进行物种传播/迁移。所有细胞在具有概率“ PEXT”的迭代步骤之前都均可出现,并且对于3x3邻域内的重新殖民化或新的定植事件角细胞是概率为“ PCOR”(“ PCOR” = 0.2产生更真实的圆形扩散模式 - 请参见Nobis&Normand 2014)。对于运行时光,为“签名” = true生成了签名的结果,即,即结果类型'foc,'lco'或'noc',符号表示最终分布(“ dis”),正值呈正面值和负值,但在最后一次迭代后均未殖民时,却没有呈斑点。要获得可重现的结果,可以使用“种子”参数设置R随机数生成器的种子。
I.在网络安全和信息保护领域的引言中,对称密码学是基础,刺激数据并维护机密性的纯度[19]。在其核心上,对称密码学围绕着秘密关键生成元素程序的关键过程,该过程加强了安全的通信和数据加密。本文深入研究了对称密码学的复杂领域,揭示了秘密密钥生成的本质及其在保护数字信息中必不可少的作用[1]。对称密码学依赖于单个共享密钥来加密和解密数据。此共享密钥的起源在于关键产生的细致过程。这个基本过程是通过使用随机数生成器来制作独特加密密钥的。此密钥用作数据安全性的关键,提供了将明文转换为密文的机制,反之亦然。确保此键保持秘密,并且不受未经授权的访问的不渗透,这对于保留加密数据的完整性和机密性至关重要[2]。对称密码学中秘密密钥的重要性不能被夸大。充当信息,通过该导管,秘密钥匙封装了安全通信的本质。它的一代算法是精心制作的,以阻止对抗性的尝试,以猜测或反向工程钥匙。这种算法的复杂性可确保对密码保持弹性
摘要:如今,医疗保健监测系统在医疗领域非常重要,可以立即了解患者的健康状况。在拟议的系统中,传感器固定在患者的身体上或放置在身体周围的某个距离上,以收集患者的重要参数,例如血压,温度,心跳率等。这些参数是由医疗保健专业人员通过蓝牙,Zigbee等的某些连接机制收集的。这些重要数据将以安全的方式外包到云存储,以避免攻击者的攻击。因此,我们需要一些保护机制来保护此信息。本文通过基于椭圆曲线(ECDH)加密术的Diffie-Hellman键交换,通过随机数密钥生成提出了轻巧的加密算法(对称键)。由于替换字节(S-box)和折叠(水平和垂直)操作的结果,提出的对称密钥算法实现了加密术的最重要特性,例如混乱和扩散。实验结果表明,所提出的算法的整体执行时间优于标准的高级加密标准(AES)算法。所提出的算法的吞吐率为20.525095 kb/秒,而对于标准AES算法吞吐量率为18.727215 kb/秒。因此,提出的算法比现有的AES算法快。此外,在提出的算法中,S-box,IS-box和关键生成过程的构建完全不同,因此它增加了攻击者的复杂性,并且会使攻击者造成混乱。
Code Busters测试评估参与者对密码学,逻辑思维和编码技能的了解,重点是加密基础知识,历史密码和现代代码。测试格式从区域到国家层面,随着难度的增加而异。要成功,必须采用解决问题的技能,逻辑思维和有效的时间管理。利用练习材料并熟悉测试格式可以提高性能。进行练习,在“纯文本”框中输入一个短语,然后在“提示数字”下输入6个随机数。单击“显示建议的问题文本”,然后“替换问题文本”。使用铅笔和纸写下短语的Pollux密码文本。首先使用提供的线索自行解决难题。您也可以尝试:输入新短语,更改数字分配或单击蓝色“随机化”按钮。此密码具有多个解决方案,因为一个以上的数字可以是点,破折号或X。在4个不同的网站上了解Morse Ciphers并在Morbit密码上观看视频:您可以找到书面示例和练习工作表,并创建自己的Morbit Cipher来解决。团队目标:与科学一起玩乐,共同努力,不要害怕马上不知道答案。
真正的随机数发生器(TRNG)是许多应用程序的基本构建块,例如密码学,蒙特卡洛模拟,神经形态计算和概率计算。基于低屏障磁体(LBM)的垂直磁性隧道连接(PMTJ)是TRNG的天然来源,但它们倾向于遭受设备之间的变化,低速和温度敏感性的困扰。相反,用纳秒脉冲(表示为随机磁性的随机换能器(智能)设备)操作的中型驻磁铁(MBM)可能是此类应用的优越候选者。我们通过使用1-D Fokker – Planck方程来求解其脉冲持续时间(1 ps至1 ms)的基于MBM的PMTJ(E B〜20-40 K B t)的系统分析作为脉冲持续时间(1 ps至1 ms)的函数。我们研究了电压,温度和过程变化(MTJ尺寸和材料参数)对设备开关概率的影响。我们的发现表明,短期脉冲激活的智能设备(≲1ns)对工艺电压 - 温度(PVT)变化的敏感性要小得多,而消耗较低能量(〜fj)的智能设备比与较长脉冲一起使用的相同能量(〜fj)的敏感性要小得多。我们的结果显示了建立快速,节能和强大的TRNG硬件单元以解决优化问题的途径。