尽管我们 2022 年 10 月的活动以及下面的员工观点和建议专门关注数字媒体中针对儿童的模糊广告,但我们必须认识到这一问题出现的更广泛背景。网上有许多针对儿童的新兴趋势,其中许多趋势导致或加剧了模糊广告带来的危害。我们现在生活在一个数字世界中,孩子们将相当一部分空闲时间(和上学时间)花在网上。他们发现自己处于游戏平台、虚拟现实和社交媒体等沉浸式环境中,其中许多环境使用技术让他们比以往任何时候都更长时间、更频繁地参与其中;他们与有影响力的人、化身和新兴的人工智能形式互动,形成模糊朋友和陌生人、人与计算机之间界限的准社会关系;他们是侵入性数据收集的对象,通常被用来向他们推销营销或内容;他们每天都会收到数百条广告,随着孩子们上网时间的增加,这个数字还在增加;他们被引诱进行购买或通过使用暗黑模式交出数据;他们特别容易受到这些数字环境中普遍存在的欺诈行为的侵害。此外,正如美国卫生局局长最近指出的那样,人们越来越担心屏幕成瘾和因屏幕时间增加而导致的心理健康问题。
我们研究了使用由通过分束器发送的纯乘积态形成的纠缠态进行连续变量门隐形传态。我们表明,对于(通常)非幺正门,此类状态是 Choi 态,并且我们推导出隐形传态的相关 Kraus 算子,该算子可用于实现输入状态上的非高斯、非幺正量子操作。通过这一结果,我们展示了如何使用门隐形传态对使用 Gottesman-Kitaev-Preskill (GKP) 代码编码的玻色子量子比特进行纠错。该结果是在确定性产生的宏节点簇状态的背景下提出的,这些状态由恒定深度线性光学网络生成,并补充了 GKP 状态的概率供应。我们的技术的结果是,无需主动压缩操作即可实现门隐形传态和纠错的状态注入——这是量子光学实现的实验瓶颈。
摘要。无形的杂物长期以来一直吸引着流行的想象力,尤其是在保护现代高端工具免受潜在威胁的方面。几十年前,超材料和转型光学的出现引起了人们对隐形斗篷的极大兴趣,这些斗篷主要在地面和波导方式中证明。然而,尚未实现全向飞行斗篷,这主要是由于与跨表面分散的动态合成相关的挑战。我们展示了一个自主的空气吸引力的隐形斗篷,其中包含一套感知,决策和执行模块,能够在万花筒背景和中和外部刺激中保持隐形性。物理突破在于在可调式延误的时空调制中,以雕刻空间和频域中的散射场。为了智能地控制时空偏移,我们引入了随机进化学习,该学习通过最大概率推断自动与最佳解决方案一致。在一个完全自动驾驶的实验中,我们在无人机上实施了这一概念,并在三个规范的景观(海洋,陆地和空气)中展示了自适应的隐形性,相似性速度高达95%。我们的工作将隐形斗篷的家族扩展到了飞行方式,并激发了对物质发现和稳态元驱动器的其他研究。
与Cisco Stealthwatch结合使用Cisco DNA中心的隐形安全性分析服务,提供了所有网络流量的实时监控。当您使用StealthWatch Security Analytics服务将网络作为具有加密流量分析的传感器时,您可以增强网络的保护,而无需解密流量。您还可以使用StealthWatch Security Analytics服务来使网络成为不支持加密流量分析的设备上的传感器。
摘要 背景 过继细胞疗法,例如嵌合抗原受体 (CAR)-T 细胞疗法,已改善血液系统恶性肿瘤患者的治疗效果。目前,FDA 批准的六种 CAR-T 细胞产品中有四种使用基于 FMC63 的 α CD19 单链可变片段(源自鼠单克隆抗体)作为细胞外结合结构域。临床研究表明,患者对自体 CAR-T 细胞的非自身 CAR 成分或同种异体 CAR-T 细胞的供体特异性抗原产生体液和细胞免疫反应,这被认为可能会限制 CAR-T 细胞的持久性和重复给药的成功率。 方法 在本研究中,我们实施了一种一次性方法,通过表达与抗原加工相关的转运蛋白的病毒抑制剂 (TAPi) 结合编码针对 II 类 MHC 转录激活因子 (CIITA) 的 shRNA 转基因,同时减少抗原呈递和两类主要组织相容性复合体 (MHC) 的表面表达,从而防止对工程 T 细胞的排斥。通过流式细胞分析和混合淋巴细胞反应试验在体外筛选出最佳组合,并在白血病和淋巴瘤小鼠模型中在体内进行验证。使用患者样本在自体环境中评估功能,并使用同种异体小鼠模型在同种异体环境中评估功能。结果 Epstein-Barr 病毒 TAPi 和靶向 CIITA 的 shRNA 的组合可有效降低 α CD19“隐形”CAR-T 细胞中的细胞表面 MHC I 类和 II 类,同时保留体外和体内抗肿瘤功能。使用先前接受自体 α CD19 CAR-T 细胞治疗的患者的 T 细胞进行的混合淋巴细胞反应试验和 IFN γ ELISpot 试验证实,表达隐形转基因的 CAR T 细胞可逃避同种异体和自体抗 CAR 反应,这在体内得到了进一步验证。重要的是,我们注意到接受过多次 CAR-T 细胞输注的患者中存在抗 CAR-T 细胞反应,而这种反应在体外用含有隐形转基因的自体 CAR 进行再刺激时会降低。结论总之,这些数据表明,所提出的隐形转基因可能会降低自体和同种异体细胞疗法的免疫原性。此外,患者数据表明,重复剂量的基于 FMC63 的自体 α CD19 CAR-T 细胞可显著增加这些患者的抗 CAR T 细胞反应。
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。
量化纠缠对于理解纠缠作为量子信息处理中的一种资源至关重要,为此提出了许多纠缠度量。在数学上定义纠缠度量时,我们应该考虑纠缠态和可分离态之间的可区分性、局部变换下的不变性、局部操作和经典通信下的单调性以及凸性。这些要求是合理的,但可能还不够,特别是考虑到量子态在多方量子信息处理中的有用性时。因此,如果我们想研究多方纠缠作为一种资源,那么在定义多方纠缠度量时就必须考虑量子态在多方量子信息处理中的有用性。在本文中,我们基于三方隐形传态能力为三量子比特系统定义了新的多方纠缠度量,并表明这些纠缠度量满足成为真正多方纠缠度量的要求。我们还将纠缠测量推广到 N 量子比特系统,其中 N ≥ 4,并讨论了这些量可能是测量真正多部分纠缠的良好候选者。
我们考虑这样一种场景:一方(比如 Alice)准备一个纯的两量子比特(最大纠缠或非最大纠缠)状态,并通过量子比特(单元或非单元)通道将该状态的一半发送给另一方(比如 Bob)。最后,共享状态用作隐形传态通道。在这种情况下,我们专注于根据最大平均保真度和保真度偏差(保真度值随输入状态波动)来描述量子比特通道集作为量子隐形传态 (QT) 资源的最终状态有效性。重要的是,我们指出,当初始准备状态对通用 QT 有用(即,对于最大纠缠状态)或对通用 QT 无用(即,对于非最大纠缠纯态的子集)时,存在一个量子比特通道子集,对于该子集,最终状态对通用 QT 有用(最大平均保真度严格大于经典界限,保真度偏差为零)。有趣的是,在后一种情况下,我们表明,非单元通道(耗散相互作用)比单元通道(非耗散相互作用)更有效地从非最大纠缠纯态产生对通用 QT 有用的状态。
物理学家 Klaus Jöns 教授(帕德博恩大学)解释说:“量子隐形传态是指光子状态(即小光粒子)转移到另一个状态。简单来说,发射器和接收器交织在一起。这需要某些产生不可区分光子的光源,使用确定性的光子源是理想的。通常使用由半导体材料制成的量子点。”科学家们没有专注于生产理想的材料,而是研究不完美的量子点,旨在无论情况如何都能以最大的可靠性识别隐形传态。他们使用复杂的测量方法将“隐形传态质量”提高到 84.2%。
在本文中,我们探索了不同量子场论 (QFT) 中的反馈控制协议,以研究量子系统非幺正演化中的量子关联。传统的 QFT 研究侧重于幺正演化下纯态的量子纠缠,然而,我们使用量子能量隐形传态 (QET)(一种利用基态纠缠的能量传输协议)来研究混合态中的量子关联,并引入量子不和谐作为度量。QET 涉及中间电路测量,这会破坏纯态纠缠。尽管如此,我们的分析表明,量子不和谐在整个 QET 过程中保持关联。我们使用包括 Nambu-Jona-Lasinio (NJL) 模型在内的基准模型进行了数值分析,揭示了量子不和谐始终充当相变的序参数。该模型被扩展为同时具有手性化学势和化学势,这对于研究模拟与手性密度算子耦合的左夸克和右夸克之间的手性不平衡的相结构很有用。在我们研究的所有情况下,量子不和谐都表现为相变的序参数。