音频隐肌是一种将数据隐藏在WAV,MIDI,AVI,MPEG和MP3文件的音频文件中的技术。音频文件已充当秘密通信多媒体文件(文本,图像,音频和视频)的封面。最不重要的位算法(LSB)是音频隐肌的标准和传统算法。使用LSB算法隐藏在WAV的音频文件中的文本文件中。由组织内部或外部交换了由此产生的Stego音频文件,以促进具有安全性和不可识别性的远程诊断。将音频隐身与物联网合并,以机密性和完整性增强了医疗记录中的安全沟通。使用归一化的互相关测量盖子和Stego Audios中的相似性。平均平方误差(MSE),峰值信号噪声比(PSNR)和位错误率(BER)性能指标评估封面音频和Stego音频文件中的失真。使用远程医疗模型的IoT使用IoT的音频隐身术超过了Stego Audio清晰度,平均PSNR为34.5dB,较低的BER为0.00035。
1利兹风湿病研究所,利兹大学,英国利兹大学2 NIHR LEEDS生物医学研究中心,利兹教学医院NHS Trust,NHS NHS Trust,英国利兹,英国3号。英国Thames 5 Norwich练习,英国诺里奇6号卫生中心6风湿病学系,Stockport NHS基金会信托基金会,英国Stockport,英国Stockport 7 Powys教学委员会,英国Brecon,Brecon Bronllys医院8 Norwich医学院,East Anglia,East Anglia,UK 9 Norwich,UK 9 Norwich,UK 9 Norwich,PMRGCAUK,PMRGCAUK,PMRGCAUK,PMRGCAUK,INSPRAIMS NOSSES,普通医院,及其流动性疾病。风湿病学,诺森比亚医疗保健NHS基金会信托基金会,纽卡斯尔,英国泰恩河12号伦敦国王学院和盖伊和盖伊和圣托马斯宠物中心诺福克和诺里奇大学医院NHS基金会信托基金会的风湿病学系,英国诺里奇,与:Max Yates,Norwich医学院,Bob Chambion Research and Education Building,第2楼,East Anglia大学,诺里奇NR4 NR4 7UQ,英国。电子邮件:m.yates@uea.ac.uk电子邮件:m.yates@uea.ac.uk
USCIS 通常要求第三方请求者证明他们已获得记录主体的同意接收记录。或者,第三方请求者必须证明记录主体已去世,或以其他方式证明所请求的记录可能会被公开,例如当记录中没有隐私利益,或者记录中的公共利益超过主体的隐私利益时。如果记录主体的出生日期在提交此请求之前超过 100 年,则通常不需要记录主体的同意。寻求修改或更正与记录主体有关的记录的第三方请求者必须证明他们已获得记录主体的同意并且他们代表记录主体行事。
2023 年 9 月 27 日——调查(FBI)、美国网络安全和基础设施安全局(CISA)、... [3] NSA,《网络基础设施安全指南》,https://media.defense...
我们针对 Z nmk 中的隐子群问题提出了一个多项式时间精确量子算法。该算法使用模 m 的量子傅里叶变换,不需要对 m 进行因式分解。对于光滑的 m ,即当 m 的素因数为 (log m ) O (1) 时,可以使用 Cleve 和 Coppersmith 独立发现的方法精确计算量子傅里叶变换,而对于一般的 m ,可以使用 Mosca 和 Zalka 的算法。即使对于 m = 3 和 k = 1,我们的结果似乎也是新的。我们还提出了计算阿贝尔群和可解群结构的应用程序,它们的阶具有与 m 相同(但可能是未知的)素因数。可解群的应用还依赖于 Watrous 提出的用于计算子群元素均匀叠加的技术的精确版本。
ferpa是一项联邦法律,由美国教育部(部门)的学生隐私政策办公室(SPPO)管理。ferpa保护“教育记录”,这些记录通常定义为与学生或由教育机构或机构或为机构或机构行事的一方维护的记录。“教育机构或机构”,以下称为“学校”,通常是指学区,公立小学或中学或专上教育机构,例如大学或大学。对“教育记录”的定义也有一些豁免,例如执法部门记录和唯一的所有权记录。更多信息可在https://studentprivacy.ed.gov/faq/what what records-are-aare-verpaed-ferpa上获得。
对于多元签名方案,公共密钥的大小主要取决于变量的数量,方程数和有限字段的大小。取决于不同的影响因素,有不同的研究方法来开发UOV变体。第一种方法不会改变UOV方案的原始设计,而只会改变关键生成的方式。Petzoldt等人开发的压缩技术[23]基于以下事实:公共密钥的一部分可以在生成秘密密钥之前任意选择。这意味着可以使用伪随机数生成器的种子来生成公共密钥的一部分,公共密钥的大小主要取决于油空间的尺寸,方程数和有限端的大小。请注意,该技术可以应用于各种UOV变体。第二种方法是使用在小型场上定义的多项式作为公钥,而在扩展字段上定义了签名和消息空间,请参见[5]中的luov。,但其几个参数被Ding等人打破了。[12]。第三种方法是降低密钥生成步骤中石油空间的尺寸。在符号步骤中,他们使用不同的方法从原始的油空间诱导新的油空间,以使新的油空间的尺寸更大或等于方程数,例如QR-UOV [15],Mayo [3],Snova [28]。QR-UOV [15]的作者在扩展场上构建了油空间,然后通过痕量函数或张量产品将其映射到基础字段上的矢量空间中,另请参见[18]。[16]。在基本场上定义了签名和消息空间。BAC-UOV [25]与QR-UOV相似,但Furue等人打破了。对于蛋黄酱[3],它们通过搅动油和醋地图P:f n
摘要:骨膜被称为覆盖大多数骨表面的薄结缔组织。从第一世纪的研究中证实了其膨胀的骨骼再生能力。最近,揭露了具有独特生理特性的骨膜中的多能干细胞。存在于动态环境中,受复杂的分子网络调节,骨膜干细胞出现是具有强大的增殖和多重分化能力。通过对研究的持续探索,我们现在开始更深入地了解骨膜在骨形成和原位或异位修复中的巨大潜力。不可否认的是,骨膜正在进一步发展为一种更有希望的策略,可以在骨组织再生中利用。在这里,我们总结了骨膜,细胞标记物以及骨膜干细胞的生物学特征的发育和结构。然后,我们审查了它们在骨修复和基本分子调节中的关键作用。对骨膜相关的细胞和分子含量的理解将有助于增强骨膜的未来研究工作和应用转化。
随机梯度下降(SGD)在实践中表现出强大的算法正则化效率,该算法在现代机器学习方法的概括中起着重要作用。在这项工作中,我们试图在线性回归的更简单设置(包括众多和参数化的政权)中理解这些问题,我们的目标是对(未注册)平均SGD与Ridge Regres-Sion的显式正规化提供(未注册的)平均SGD的隐性正规化比较。对于一系列最小二乘问题实例(在高维度中是自然的),我们显示:(1)对于每个问题实例和eviry Ridge参数((未进行定制)SGD),当在对数上提供的样品提供的样本比提供给山脊算法更糟糕的ridge songe(提供的常量)的样本(概括)不变的步骤(概括了SGD的常数)(概括) (2)相反,存在最佳调整的山脊回归需要的样本比SGD更多的样本以具有相同的概括性能。总的来说,我们的结果表明,到对数因素,SGD的概括性能总是不比Ridge回归的多种过度参数化的问题差,实际上,对于某些问题实例来说可能会更好。更普遍地,我们的结果表明,即使在更简单(过度参数化)凸设置中,算法正则化如何产生重要的后果。