摘要 目的。脑弹性成像可以揭示随着年龄、疾病和损伤而发生的结构和组成的细微但具有临床重要意义的变化。方法。为了量化衰老对小鼠脑弹性成像的具体影响,并确定影响观察到的变化的关键因素,我们对一组从年轻到老年的野生型健康小鼠应用了 2000 Hz 的光学相干断层扫描混响剪切波弹性成像。主要结果。我们发现随着年龄的增长,僵硬性呈明显增加趋势,在这个样本组中,从 2 个月到 30 个月,剪切波速度增加了约 30%。此外,这似乎与全脑液含量的下降密切相关,因此老年人的大脑含水量较少,僵硬性较大。应用流变学模型,通过对脑液结构的淋巴系统部分进行特定分配,以及脑实质硬度的相关变化,捕捉到强烈的影响。意义重大。弹性成像测量的短期和长期变化可能为脑淋巴系统液体通道和脑实质成分的渐进和精细变化提供敏感的生物标志物。
航天器开发预算的很大一部分用于集成和测试。考虑到开发太空计划所投入的资源、恶劣的太空环境以及发射后不可能返工,发射前与任务保障相关的费用(例如地面测试)是合理的。为此,政府和行业制定了严格的地面测试标准,以确保满足测试有效性和任务保障目标。从历史上看,这些规范是为高优先级和高成本航天器的国家安全太空计划编写的,期望任务保障要求将针对优先级较低的航天器进行量身定制。随着以降低成本和提高风险承受能力为目标的太空计划的激增,需要更全面的文件来说明如何定制地面测试要求以确保与降低的任务保障期望保持一致。
– IEC 61800-5-1,可调速驱动器的安全要求 – IEC 60601-1,医疗设备标准 – IEC 61010-1,测量、控制和实验室设备的安全标准 – IEC 60950-1,电信设备标准 – ---
∗ 基金项目 : 科技创新 2030“ 脑科学与类脑研究 ” 重大项目 (2022ZD0208601), 国家自然科学基金 (62076250,62204204), 陕西
仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫
摘要:当前的显微活性剂目标是扩展其通常很小的工作范围,这通常是由悬臂施加的机械连接和恢复力造成的。为了克服这一点,我们提出了一个可靠的悬浮设置,以实现磁性防护质量的自由垂直运动。通过叠加永久性磁场,我们将两个平衡位置印记,即在地面板上,并在预定的高度上悬浮。通过压电堆栈执行器的合作来实现两个静止位置之间的能量 - 良性切换,最初加速了证明质量,并随后进行电磁控制。通过在共同设计中同时优化控制器和设计参数,可以找到强大的平衡位置与能量良好的转变之间的权衡。基于平局的控制器来跟踪所获得的轨迹。仿真结果证明了组合优化的有效性。
幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
人类大脑类器官,又称大脑类器官或早期的“迷你大脑”,是重现人类大脑发育各个方面的 3D 细胞模型。它们在促进我们对神经发育和神经系统疾病的理解方面显示出巨大的希望。然而,前所未有的体外模拟人类大脑发育和功能的能力也带来了复杂的伦理、法律和社会挑战。类器官智能 (OI) 描述了将此类类器官与人工智能相结合以建立基本记忆和学习形式的持续运动。本文讨论了有关大脑类器官和 OI 的科学地位和前景、意识的概念化和心脑关系、伦理和法律层面的关键问题,包括道德地位、人与动物嵌合体、知情同意和治理问题,例如监督和监管。需要一个平衡的框架来允许重要的研究,同时解决公众的看法和道德问题。科学家、伦理学家、政策制定者和公众之间的跨学科视角和积极参与可以为类器官技术提供负责任的转化途径。可能需要一个深思熟虑、积极主动的治理框架来确保这一有前途的领域在道德上负责任的进展。
摘要近年来生物制剂在各种疾病中的使用已大大增加。中风是一种脑血管疾病,是第二大最常见的死亡原因,也是全球发病率高的残疾原因。用于用于治疗急性缺血性中风的生物制剂,Alteplase是唯一的溶栓剂。同时,当前的临床试验表明,两种重组蛋白,Tenecteplase和非免疫原性葡萄球菌酶,作为用于急性缺血性中风治疗的新溶栓剂的最有前途的。此外,使用干细胞或类器官进行中风治疗的基于干细胞的治疗在临床前和早期临床研究中显示出令人鼓舞的结果。这些急性缺血性中风的策略主要依赖于未分化的细胞的独特特性来促进组织修复和再生。但是,在这些方法成为常规临床用途之前,仍有一段巨大的旅程。这包括优化细胞输送方法,确定理想的细胞类型和剂量以及解决长期安全问题。本综述介绍了缺血性中风中溶栓治疗的当前或有希望的重组蛋白,并突出了中风治疗中干细胞和大脑器官的前景和挑战。
人类大脑类器官,又称大脑类器官或早期的“微型大脑”,是重现人类大脑发育各个方面的 3D 细胞模型。它们在促进我们对神经发育和神经系统疾病的理解方面显示出巨大的潜力。然而,前所未有的体外模拟人类大脑发育和功能的能力也带来了复杂的伦理、法律和社会挑战。类器官智能 (OI) 描述了将此类类器官与人工智能相结合以建立基本记忆和学习形式的持续运动。本文讨论了有关大脑类器官和 OI 的科学地位和前景、意识的概念化和心脑关系、伦理和法律层面的关键问题,包括道德地位、人与动物嵌合体、知情同意以及监管等治理问题。需要一个平衡的框架来允许重要的研究,同时解决公众的看法和道德问题。科学家、伦理学家、政策制定者和公众之间的跨学科观点和积极参与可以为类器官技术提供负责任的转化途径。可能需要一个深思熟虑、积极主动的治理框架来确保这一有前景的领域取得合乎道德的负责任的进展。