摘要:由于隧穿而导致的地面变形是软地面隧道设计中最重要的挑战之一,也可以预测隧道对附近结构的相关影响。预测隧道项目中地面沉降的方法之一是使用分析和数值方法。通过准确的仪器和行为测量数据的背面分析来测量定居量,除了估计地面和周围结构的沉降状态外,还可以确定土壤和结构的岩土技术参数在即将到来的部分和未来设计的设计中。在这项研究中,已经尝试通过使用背部分析来验证通过挖掘城市火车线隧道引起的测量定居点。为此,使用了与经验和分析方法获得的预测以及岩土工程有限元分析软件(Plaxis)的比较。结果表明,通常,经验方法获得的值大于测量值,以进行地面沉降。
图3。接触过程中不同材料之间电子结构的简化示意图; a)两种金属,从较低的能量金属可以容纳来自较高能量金属的电子; b)金属和绝缘子,那里没有一个可以使电子的自由状态满足,因此只有通过隧穿才能将电子转移到绝缘体(或通过热激发过程); c)在金属和缺陷的绝缘子之间,原子缺陷使可用的电子状态发生电子传输。d&e)显示d)陶瓷的原理图;和e)聚合物键合网络;左)原始晶格;右)由于在陶瓷网络中引起的缺陷,该晶格通过多原子协调的键合网络维持,而在聚合物中,一维键网网络被损坏,可能导致传质。
我们在二维材料的分散体中发展了一个磁故障理论(MB),其中两个或多个半经典的回旋轨道相互接近。MB是由于几个轨迹之间的量子隧穿而导致的,这导致了非平凡的散射幅度和相。我们表明,对于任何鞍点,可以通过将其映射到1D紧密结合链中的散射问题来解决此问题。此外,布里渊区边缘上的磁故障发生促进了批量兰道水平状态和2D轨道网络的形成。这些扩展的网络状态构成了有限能量扩展的分散迷你频段。可以在运输实验中观察到这种效果,这是量子厅杆中纵向散装电导的强大增强。此外,可以通过可视化大量电流模式在STM实验中探测它。
量子传输3、DNA中的质子隧穿4和光合作用系统中的能量传递。5作为多体问题,由于希尔伯特空间维数呈指数增长且环境自由度数量巨大,开放量子系统的精确表征并不可行。然而,通过追踪环境自由度TrE($)或在经典相空间内处理环境6和/或系统,该问题变得更容易处理。7,8为了研究开放量子系统,迄今为止已开发出多种方法,从完全经典的9,10到完全量子方法。11 – 18虽然每一种方法都取得了成功,但它们受到许多限制的阻碍,例如无法考虑量子效应,或者由于稳定性约束需要采用非常小的离散化步骤而需要大量计算资源。此外,环境影响的综合集成,特别是在高度非马尔可夫场景中,对计算开销有很大影响。
M.Tech. - 人工智能和机器学习,BITS Pilani。高级系统工程师,Infosys Limited,印度泰米尔纳德邦钦奈 ---------------------------------------------------------------------***--------------------------------------------------------------------------------- 摘要 - 量子神经形态计算是量子计算和神经形态工程的创新融合,有望通过提高计算效率和可持续性彻底改变生成式人工智能。本文探讨了量子神经形态计算的基本原理、其满足生成式人工智能模型日益增长的能源需求的潜力,并详细探讨了实施方法。通过利用神经形态架构中的叠加、纠缠和隧穿等量子力学现象,该方法旨在减少人工智能系统的计算负担和功耗。其中还包括实际的编码示例和视觉插图,以帮助理解并促进这一变革领域的进一步跨学科研究。
1. 引言单电子隧穿 (SET) 器件提供了一种操控单个电子并以极高的精度检测这些电子运动的方法。它们对计量和基本常数的潜在影响早在 20 世纪 80 年代该领域的发展中就已被认识到。到 20 世纪 90 年代初,几种 SET 器件已证明能够检测比 e 小得多的电荷并将单个电荷从一个电极转移到另一个电极。在过去几年中,这些器件的性能已提升到基本标准和高精度测量所需的水平:SET 静电计可以在 1 Hz 带宽内检测到 ~ 10 –5 e;电子陷阱可以将单个电荷存储数小时;电子泵可以传输数亿个单个电子,不确定度约为 10 –
高保真量子信息处理需要快速门和长寿命量子存储器的结合。在这项工作中,我们提出了一种混合架构,其中奇偶校验保护的超导量子比特直接耦合到马约拉纳量子比特,后者充当量子存储器的角色。超导量子比特基于 π 周期性约瑟夫森结,该结由栅极可调的半导体导线实现,其中单个库珀对的隧穿受到抑制。其中一根导线还包含四个定义量子比特的马约拉纳零模式。我们证明这可以实现 SWAP 门,从而允许在拓扑和常规量子比特之间传递量子信息。该架构将可以用超导量子比特实现的快速门与拓扑保护的马约拉纳存储器相结合。
摘要:我们考虑一维量子步行的第一个检测问题,并重复局部测量。采用频道射击测量方案和更新方程式,我们研究了隧道对检测时间的影响。特别是,我们在两种具有物理现实的典型情况下,在有限的紧密结合晶格上研究连续的时间量子行走。在没有高斯初始状态的隧穿的情况下,第一个是量子行走的情况。第二种是将屏障添加到系统中的情况。表明,可以通过修改初始条件来观察到第一个检测概率的衰减行为的过渡,并且在存在隧道障碍的情况下,可以比无杂质的晶格更早地检测到粒子。这表明沃克在重复测量下穿过障碍物的隧道时会加快沃克的演变。引入了第一个检测时间,以研究量子步行的隧道时间。此外,我们通过得出渐近公式来分析关键的及传递点。
摘要:研究了两个电子表面单次交叉散射的过渡路径飞行时间。这些飞行时间揭示了非平凡的量子效应,例如共振寿命和非经典通过时间,并揭示了非绝热效应通常会增加飞行时间。飞行时间是使用数值精确时间传播计算的,并与最少开关表面跳跃 (FSSH) 方法获得的结果进行了比较。两种方法的比较表明,只有当散射在相关绝热表面上被经典允许时,FSSH 方法才适用于过渡路径时间。然而,当隧穿和共振等量子效应占主导地位时,FSSH 方法不足以准确预测正确的时间和过渡概率。这些结果突出了不考虑量子干涉效应的方法的局限性,并表明测量飞行时间对于从时间域深入了解非绝热散射中的量子效应非常重要。Q