我们研究了一个单频哈伯德模型,用于扭曲的曲酸酯双层,其扭曲角为43.6°和一个含有58个位点的Moire Cell。我们使用变分簇近似(VCA),该变异群近似(VCA)准确地处理短范围的相关性,并以单层为导向d-Wave超导率的圆顶,仅仅是从强烈的现场排斥的半填充中。,当层间隧穿足够强大时,我们发现在过量的区域中,在小掺杂区域中发现一个时间反向对称性(TRS)破裂阶段。与期望相反,与先前的研究相比,更接近45◦扭曲角度不会扩展该TRS区域[Lu等人,Phys。修订版b 105,245127(2022)]在53◦扭曲角度上。这归因于以下事实:竞争中的两个超导状态几乎具有相同的节点结构。
摘要 国际指南建议糖尿病患者穿着尖头厚底鞋以防止足部溃疡。然而,这种鞋与许多中低收入国家 (LMIC) 的某些文化、气候和社会经济条件不相容。本范围界定审查旨在总结已知的 LMIC 糖尿病患者所穿鞋类情况,并考虑根据当前做法,国际糖尿病足指南在这些情况下是否实用且可行。我们在 PubMed、CINAHL、Scopus、Embase、Web of Science、拉丁美洲和加勒比健康科学文献和非洲在线期刊中搜索了记录 LMIC 糖尿病患者所穿鞋类的文章。来自 13 个国家的 25 项研究符合纳入条件,结果表明很大一部分糖尿病患者所穿的鞋类不符合当前指南的要求,大多数研究中凉鞋和人字拖是热门选择。做出这些选择的原因包括贫困、对鞋类选择的重要性缺乏认识和缺乏沟通、舒适度和文化规范。我们建议依赖国际指南的中低收入国家医疗保健系统认真考虑他们的建议是否适合其环境。糖尿病足专家和中低收入国家的医疗保健利益相关者应合作设计专门针对中低收入国家的替代指南、策略和干预措施,以提高预防实践的可行性和接受度。
通过金属-绝缘体-金属隧道结的非弹性隧穿 (LEIT) 发光是一种超快发射过程。它是在集成电路上实现从电信号到光信号的超快转换的有前途的平台。然而,现有的 LEIT 器件制造程序通常涉及自上而下和自下而上的技术,这降低了它与现代微加工流程的兼容性并限制了其在工业扩大规模中的潜在应用。在这项工作中,我们通过使用原子层沉积生长的多层绝缘体作为隧道屏障来解除这些限制。我们首次完全通过微加工技术制造 LEIT 器件,并在环境条件下表现出稳定的性能。在整个有源区域上观察到均匀的电致发光,发射光谱由金属光栅等离子体形成。在 LEIT 中引入多层绝缘体可以为设计隧道屏障的能带景观提供额外的自由度。所提出的制备稳定的超薄隧道势垒的方案也可能在广泛的集成光电器件中找到一些应用。
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
摘要 — 过去十年,碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的商业化不断扩大。栅极氧化物可靠性是 SiC 功率 MOSFET 的主要问题,因为它决定了器件的使用寿命。在这项工作中,我们研究了商用 1.2 kV SiC 功率 MOSFET 在不同栅极电压下的栅极漏电流。高氧化物电场引发的碰撞电离和/或阳极空穴注入 (AHI) 导致空穴捕获,从而增强了栅极漏电流并降低了器件的阈值电压。由于 Fowler-Nordheim (FN) 隧穿而产生的电子注入和捕获往往会降低栅极漏电流并增加阈值电压。还对商用 MOSFET 进行了恒压时间相关电介质击穿 (TDDB) 测量。栅极漏电流的结果表明,场加速因子的变化是由于高栅极氧化物场下栅极电流/空穴捕获增强所致。因此,建议在低栅极电压下进行 TDDB 测量,以避免在正常工作栅极电压下高估寿命。
6量子技术和应用101 6.1扫描隧穿显微镜101 6.1.1锻炼:隧道重新审视102 6.1.2练习:表面的形状105 6.2光谱频谱107 6.2.1锻炼:氢气的发射光谱:氢气的发射光谱:锻炼108 6.2.2锻炼:氦气光谱110 6.3核磁共振6.3核能110练习:3.10练习:3.3.10练习。量子计算的块114 6.4.1练习:尺寸的祝福114 6.4.2练习:Qubit 116 6.4.3练习:量子门和繁殖器117 6.4.4练习:量子门是统一的117 6.4.4练习:Pauli旋转:Pauli旋转118 6.4.6练习119 6.4.7练习:锻炼120量子练习:铃响120量:120 6.5量子。 123 6.5.2练习:量子密钥分布123 6.6绝热量子计算126 6.6.1练习:量子最小化127
二十世纪初,人们试图理解原子尺度上观察到的各种现象,这导致了量子物理学的形成。这使我们能够理解块体材料的特性如何从其量子起源中产生,随后利用这些特性在二十世纪下半叶产生了半导体、超导体和激光等技术应用。这些应用对社会产生了巨大的影响,如果没有它们,无处不在的电子产品、电脑、手机和互联网将是不可想象的。如今,这一突破被称为第一次量子革命。它一直受到基本设备组件微型化的不断推动和维持。在此过程中,技术发展在二十世纪末达到了这样的阶段,即可以控制和操纵单个量子自由度。从观察到控制的范式转变打开了一扇新的大门,我们利用这种能力可以实现的目标被称为第二次量子革命。其目的是制造新型量子设备,使其功能中充分利用量子特性(例如量子态的叠加、纠缠、压缩和隧穿)。
超导技术利用超导体材料的零电阻特性,引起了人们的极大理论和实践兴趣,其应用范围涵盖量子计算、超高精度传感和量子计量等领域。这些领域的关键现象是约瑟夫森效应,即量子隧穿超电流在两个超导电极之间流动的能力。这种效应已被用于构建超导量子干涉装置 (SQUID),可用作最先进的电磁 (EM) 信号传感器。最近,几种新型 SQUID 设备已显示出在国防/医疗应用方面的巨大潜力,例如,用于捕获和分析用于通信的信号。到目前为止,电路模型已被用来模拟这些设备的性能,但这些模型在某种程度上受到限制。因此,通过利用超导性的新有效场论,如现象学金兹堡-朗道形式或非平衡统计力学方法,该项目将开发和实施一类新的微观模型。这反过来又可以用来验证更复杂设备的行为。
摘要:分子腔内成键的氢原子经常经历隧穿或热传递过程,这些过程在各种物理现象中发挥着重要作用。此类传递可能需要也可能不需要中间态。此类瞬时状态的存在通常通过间接方式确定,而尚未实现对它们的直接可视化,主要是因为它们在平衡条件下的浓度可以忽略不计。在这里,我们使用密度泛函理论计算和扫描隧道显微镜 (STM) 图像模拟来预测,在专门设计的电压增强高传输速率非平衡条件下,吸附在 Ag(111) 表面的无金属萘菁分子中两氢转移过程的顺式中间体将在双 C 形态的复合图像中可见。在理论预测的指导下,在调整扫描温度和偏压下,STM 实验实现了顺式中间体的直接可视化。这项工作展示了一种直接可视化难以捉摸的中间体的实用方法,增强了对氢原子量子动力学的理解。
摘要 高强度激光场可以电离原子和分子,也可以引发分子解离。本文综述了利用冷靶反冲离子动量谱和定制强场飞秒激光脉冲的潜力所取得的实验最新进展。说明了通过检测离子动量来对分子结构和小分子取向进行成像的可能性。详细分析了非绝热隧道电离过程,重点关注隧道出口处电子波包的性质。本文综述了电子在圆偏振光隧穿过程中如何获得角动量和能量。电子是一个具有振幅和相位的量子物体。大多数强场电离实验都集中在电子波函数的绝对平方上。电子全息角条纹技术使得能够检索强场电离中的维格纳时间延迟,这是电子波函数在动量空间中的相位的属性。动量空间中的相位与位置空间中的振幅之间的关系使我们能够获取有关电子在隧道出口处的位置的信息。最后,讨论了最近研究强场电离纠缠的实验。