从多模式MRI中进行的脑组织分割是许多神经影像分析管道的关键基础。已建立的组织分割方法并未开发出来应对由病理学(例如白质病变或肿瘤)引起的大型解剖变化,并且在这些情况下通常会失败。同时,随着深神经网络(DNN)的出现,脑损伤的分割显着成熟。然而,现有的方法很少允许对正常组织和脑病变的联合分割。当前,注释的数据集通常仅处理一个特定任务,并且依赖任务特定的成像协议,包括任务特定的成像模式集,因此目前妨碍了针对此类联合任务的DNN。在这项工作中,我们提出了一种新的方法,可以从聚合的任务特异性异型模式结构域构建关节组织和病变分割模型。从关节问题的各种公式开始,我们展示了如何通过经验分解和优化预期的风险。我们利用了处理跨数据集的异质成像方式的风险上限。为了应对潜在的域转移,我们基于数据增强,对抗性学习和伪健康的生成进行了整合并测试了三种常规技术。对于每个单独的任务,我们的联合方法与任务特定的和完全监督的模型相比具有比较性能。对两种不同类型的脑损伤进行评估,该框架将进行评估:白质病变和神经胶质瘤。在后一种情况下,缺乏用于定量评估目的的联合基础真相,我们提出并使用一种新型的临床上相关的定性评估方法。
监督学习涉及从培训数据集中学习。训练中的每个点都是输入输出对,其中输入映射到输出。学习问题包括以预测方式推断输入和输出之间映射的功能,以便可以使用学习的功能来预测未来输入的输出。
监督学习涉及从培训数据集中学习。训练中的每个点都是输入输出对,其中输入映射到输出。学习问题包括以预测方式推断输入和输出之间映射的功能,以便可以使用学习的功能来预测未来输入的输出。
早期的NLP系统是基于规则的,依靠手工编码的规则来解释语言。但是,该领域已经发展。现代NLP使用统计和机器学习技术,允许机器从广泛的数据集中学习语言模式。此学习使NLP系统能够执行情感分析,语言翻译以及语音识别和文本识别等任务。
离线增强学习(RL)是一种学习范式,代理商从固定的经验数据集中学习。但是,仅从静态数据集中学习可以限制由于缺乏探索而限制性能。为了克服它,离线到在线RL将离线预训练与on-line-fielting结合在一起,这使代理商可以实时与环境进行互动,从而完善其政策。尽管有好处,但在线阶段的脱机RL方法中存在降解和缓慢改善。为了应对这些挑战,我们提出了一个新颖的框架,称为EN基于Semble的O ffline-o o nline(Enoto)RL。通过增加Q-Networks的数量,我们无缝桥接离线预培训和在线微调而不会降低性能。此外,为了加快线条绩效的提高,我们适当放松了Q值估计和基于公司集合的勘探机制的悲观情绪,进入了我们的框架。实验结果表明,ENOTO可以实质上提高训练稳定性,学习效率以及在一系列运动和NAVIND任务上进行微调过程中现有离线RL方法的最终表现,从而极大地超过了现有的离线离线到Online-Online-Online-Online RL方法。
摘要 - 毫米波和Terahertz网络中预测信号阻塞对于实现主动移交(PHO)和确保无缝连接至关重要。使用深度学习,多模式视觉和无线传感数据的现有方法主要取决于集中式的模型培训。尽管这些技术是有效的,但它们具有高度的成本,不足的带宽使用和延迟问题,这限制了其实时适用性。本文提出了一个语义意识的联合阻塞预测(SFBP)框架,利用轻巧的计算机视觉技术MobilenEtv3用于基于边缘的语义提取,降低了连接和计算成本。此外,我们引入了相似性驱动的联邦平均(SD-FEDAVG)机制,以增强模型聚合过程的鲁棒性,从而有效地减轻了噪声更新和对抗性攻击的影响。我们提出的SFBP框架达到了97.1%的阻塞预测准确性,与集中学习相比,与集中式学习相比,与集中的学习成本密切相匹配,而与没有语义提取的FL相比,沟通成本降低了88.75%,而沟通成本则达到57.87%。此外,与没有语义提取的FL相比,与集中学习相比,在设备上的推论相比将潜伏期降低23%,而FL相比有18%,从而改善了PHO的实时决策。此外,SD-FEDAVG机制在嘈杂条件下提高了预测准确性,从而直接通过将切换失败率降低7%来影响PHO。索引术语 - 毫计浪潮,联合学习,语义交流,阻塞预测,计算机视觉
建筑研究理学学士学位(BSAS)课程将全面的设计教育与成为活跃和敬业的全球公民所必需的广泛观点相结合。学生在社会,政治,经济和环境领域的交集中学习解决和解决明天的复杂问题。两维设计构成了四年BSAS学位的基础。技术,历史和结构课程完成了课程,使学生准备参加为期两年的NAAB认可的建筑学位硕士课程,或者在盟军学科中攻读研究生学位或职业。
生成化学信息学采用人工智能模型,例如生成对抗网络 (GAN) 和变分自动编码器 (VAE),来创建具有所需特性的新型分子结构。这些算法从现有的化学数据集中学习,并可以提出针对特定药代动力学和药效学特征优化的分子。与传统的随机筛选方法不同,生成模型允许定向探索化学空间,从而大大缩短识别先导化合物所需的时间。这种分子调整能力在解决生物利用度差、脱靶效应和毒性等挑战方面特别有价值,这些挑战通常会阻碍药物开发。
Fatma Kocer (Altair)、Shane Mooney (Kinetic Vision) - 工程数据科学工作组工程师使用基于物理的模拟创建并继续创建大量数据。我们中的一些人使用实验设计或优化来生成大型数据集,但大多数人使用反复试验过程来生成数据点。那些使用 DOE 或优化的人可以通过使用描述性和预测性分析从整个数据集中学习,从而增强设计探索并做出更好的设计决策。最近,还开发了可以使用从一次性反复试验中编译的历史数据集的 ML 方法。在本次研讨会上,我们将展示使用模拟数据将数据科学应用于工程应用。我们将讨论...