JAXA 的工程测试卫星 9 (ETS-9) 项目团队正在将基于模型的系统工程方法应用于飞行系统开发的接口管理。ETS-9 将于 2020 年代初发射,展示了下一代通信卫星的全电动航天器技术,包括新开发的霍尔效应推进器系统(如图 1 所示)。霍尔效应推进器系统由三个主要组件组成:推进器、电源处理单元 (PPU) 和推进剂流量控制模块。电源处理单元控制和监控推进器系统性能。由于不同供应商开发的组件之间存在复杂的相互作用,全面了解复杂的霍尔效应推进器系统对于项目系统工程师来说是一个具有挑战性的问题。
在本研究中,我们通过测量逆自旋霍尔效应,用实验证明了传播的 SPP 诱导自旋电流,首次证明了传播的 SPP 和自旋电流之间的相互转换性。为了确认 SPP 诱导自旋电流的存在,需要消除由激光引入局部加热引起的其他寄生效应,比如自旋量热器产生的自旋电流。这通过三项测量实现了;(i) 逆自旋霍尔效应的反向对准,(ii) s 和 p 极化引入,以及 (iii) 逆自旋霍尔效应的入射角依赖性。所展示的结果可用于开发基于 SPP 的光自旋电子耦合器,作为自旋电子器件和光学数据传输或存储之间的接口。
磁性赛道存储器。[7,8] 自旋流可通过自旋霍尔效应 (SHE) 由电荷电流产生。人们对某些类别的高质量晶体化合物产生了浓厚的兴趣,这些化合物可产生源自此类材料本征电子能带结构的较大自旋霍尔效应:[9,10] 此类材料包括拓扑绝缘体 [11–13] 以及狄拉克和外尔半金属 [14–16]。然而,在这里,我们展示了非常大的自旋霍尔效应,它是由室温下由 5 d 元素和铝形成的高阻合金中的外部散射产生的,在实际应用中非常有用。自旋轨道相互作用 (SOI) 在自旋霍尔效应中起着核心作用,通常原子序数 Z 越大,自旋霍尔效应越大。此外,化合物或合金中组成元素的 Z 值差异越大,外部散射就越大,因此 SHE 也越大。[17,18] 在这方面,将铝等轻金属与 5 d 过渡金属合金化预计会产生较大的外部 SHE。[19] 在本文中,我们表明 M x Al 100 − x(M = Ta、W、Re、Os、Ir 和 Pt)合金不仅电阻率 ρ 发生剧烈变化,而且自旋霍尔角 (SHA) θ SH 和自旋霍尔 (SHC) σ SH 也随其成分 x 而变化。我们发现,在许多情况下,在临界成分下,会从高度无序的近非晶相转变为高度结晶相。此外,我们发现电阻率和 SHA 在外部散射最大化的非晶-结晶边界附近表现出最大值。为了支持这一猜想,我们发现最大电阻率的大小和相应的 SHA 随 Z 系统地变化。这表明 5 d 壳层的填充起着至关重要的作用,因为电阻率和 SHA 与 M 的 5 d 壳层中未配对电子的数量有关,因此当 M = Re 或 Os 时,ρ 表现出最大值(根据洪特规则,未配对 d 电子的数量分别为 5、6)。我们发现电阻率与 SHA 大致成线性比例,因此与 θ SH 成反比的功耗( / SH 2 ρ θ ≈ )在最大 SHA 时最小。[20] 因此,我们发现 M x Al 100 − x 是功率较小的优良自旋轨道扭矩 (SOT) 源
我回顾了量子霍尔效应的替代模型的一些方面,该模型不基于无序势的存在。相反,在存在交叉电场和磁场的情况下,采用电子漂移电流的量化来构建非线性传输理论。替代理论的另一个重要组成部分是二维电子气与导线和施加电压的耦合。通过在外部电压固定 2D 子系统中的化学势的图像中工作,实验观察到的电压与量子霍尔平台位置之间的线性关系找到了自然的解释。此外,经典霍尔效应成为量子霍尔效应的自然极限。对于低温(或高电流),非整数子结构将较高的朗道能级分裂为子能级。电阻率中子结构和非整数平台的出现与电子-电子相互作用无关,而是由(线性)电场的存在引起的。一些结果分数恰好对应于半整数平台。
摘要:本文基于经典和新的相关霍尔效应,全面回顾了现有的主要设备。综述分为子类别,介绍现有的宏观、微观、纳米尺度和量子元件和电路应用。由于基于霍尔效应的设备使用电流和磁场作为输入,电压作为输出。研究人员和工程师几十年来一直在寻找利用这些设备并将其集成到微型电路中的方法,旨在实现新功能,例如高速开关,特别是在纳米级技术上。这篇综述文章不仅概述了过去的努力,还介绍了尚待克服的挑战。作为这些尝试的一部分,可以提到智能纳米级设备(如传感器和放大器)的复杂设计、制造和特性,以应对纳米技术中的下一代电路和模块。与几十年前出版的领域有限的教科书、专业技术手册和重点科学评论相比,这篇最新的评论论文具有重要优势和新颖之处:涵盖所有领域和应用,明确定位于纳米级尺寸,扩展了近一百五十个近期参考文献的参考书目,回顾了选定的分析模型、汇总表和现象示意图。此外,该评论还包括对每个主题子分类的综合霍尔效应的横向检查。其中包括以下子评论:主要的现有宏观/微观/纳米级设备、用于制造的材料和元素,分析模型,用于模拟的数值互补模型和工具,以及在纳米技术中实现霍尔效应所需克服的技术挑战。这种最新的评论可以为科学界提供面向新纳米级设备、模块和工艺开发套件 (PDK) 市场的新型研究的基础。
1 阿尔托大学微纳米科学系,Micronova,Tietotie 3,02150,埃斯波,芬兰 2 联邦物理技术研究院,Bundesallee 100,38116 不伦瑞克,德国 3 MIKES,Tekniikantie 1,FI-02150,埃斯波,芬兰 电子邮件:novikov@aalto.fi,alexandre.satrapinski@mikes.fi 摘要 — 基于在 SiC 上生长的外延石墨烯膜的量子霍尔效应 (QHE) 器件已被制造和研究,以开发 QHE 电阻标准。霍尔器件中的石墨烯-金属接触面积已得到改进,并使用双金属化工艺制造。测试器件的初始载流子浓度为 (0.6 - 10)·10 11 cm -2,在相对较低的 (3 T) 磁场下表现出半整数量子霍尔效应。光化学门控方法的应用和样品的退火为将载流子密度调整到最佳值提供了一种方便的方法。在中等磁场强度 (≤ 7 T) 下对石墨烯和 GaAs 器件中的量子霍尔电阻 (QHR) 进行精密测量,结果显示相对一致性在 6 · 10 -9 范围内。索引术语 - 外延石墨烯、石墨烯制造、接触电阻、精密测量、量子霍尔效应。
X-ON Electronics 最大的电气和电子元件供应商 点击查看板载霍尔效应/磁性传感器类别的类似产品: 点击查看 SDC 制造商的产品: 其他 类似产品如下:
将电子自旋融入电子设备是自旋电子学的核心思想。[1] 这一不断发展的研究领域的最终目标是产生、控制和检测太赫兹 (THz) 速率的自旋电流。[2] 为了实现这种高速自旋操作,自旋轨道相互作用 (SOI) 虽然很弱,但却起着关键作用,因为它将电子的运动与其自旋态耦合在一起。[3] 从经典观点来看,SOI 可以理解为自旋相关的有效磁场,它使同向传播的自旋向上和自旋向下的传导电子偏向相反的方向(见图 1a)。SOI 的重要结果是自旋霍尔效应 (SHE) [4] 及其磁性对应物反常霍尔效应 (AHE)。[5,6] 在具有 SOI 的金属中,SHE 将电荷电流转换为横向纯自旋
摘要:过渡金属二分法元素是一个准二维材料的家族,由于其从超导到半导体,其技术潜力很高,取决于化学组成,晶体结构,晶体结构或静电掺杂。在这里,我们揭示了通过调整单个参数,静水压力P,可以在几层过渡金属二甲基元化1 t'-WS 2中诱导电子相变的级联,包括超导,拓扑,拓扑,拓扑和霍斯霍尔效应阶段。具体而言,随着P的增加,我们观察到了双相变:超导性的抑制与𝑃≈1.15GPA的异常霍尔效应的伴随出现。非常明显的是,在将压力进一步提高到1.6 GPA以上时,我们发现了一个仍然表现出异常霍尔效应的状态的再入侵超导状态。这种超导状态显示,相对于在环境压力下观察到的相位相对于相位的各向异性显着增加,这表明具有不同的配对对称性的不同超导状态。通过第一原理计算,我们证明了该系统伴随的过渡到一个强大的拓扑阶段,具有显着不同的带轨道特征和费米表面,导致超导性。这些发现位置1 T'-WS 2作为独特的,可调的超导体,其中超导性,异常传输和频带特征可以通过中等压力的应用来调节。主文本: