点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
摘要:本篇综合综述通过研究采用功能性磁共振成像 (fMRI)、正电子发射断层扫描 (PET) 和脑电图 (EEG) 方法的研究,深入探讨了催眠的认知神经科学和催眠易感性的变化。重点关注领域包括催眠中的功能性脑成像相关性、作为催眠状态指标的脑电图波段振荡、催眠和清醒期间脑电图功能连接的改变,得出关键结论并提出未来的研究方向。所审查的功能连接发现支持以下观点:根据分离和冷控制催眠理论,催眠期间执行控制网络不同组成部分之间可用整合的中断可能与催眠反应期间对主体的改变评估相对应。一个有希望的探索途径是研究额叶的神经化学成分和非周期性脑电图活动在清醒和休息时如何与个体催眠能力的差异相关。未来研究催眠对大脑功能的影响应该优先研究不同神经网络中独特的激活模式。
a 德国于利希研究中心神经科学与医学研究所(INM-7) b 德国杜塞尔多夫大学海因里希-海涅医学院系统神经科学研究所 c 法国塞尔吉巴黎大学理论与建模实验室,CNRS,UMR 8089,塞尔吉-蓬图瓦兹 cedex 95302 d 德国于利希研究中心于利希超级计算中心(JSC)高级模拟研究所 e 德国于利希研究中心神经科学与医学研究所(INM-1) f 新加坡国立大学睡眠与认知中心、转化磁共振研究中心和 N.1 健康研究所 g 新加坡国立大学电气与计算机工程系 h 美国马萨诸塞州查尔斯顿麻省总医院 Martinos 生物医学成像中心 i 新加坡综合科学与工程项目(ISEP)
此预印本的版权所有者此版本于 2021 年 7 月 18 日发布。;https://doi.org/10.1101/2021.07.14.21260531 doi: medRxiv preprint
Constant current 0.2C charge to FC Voltage, then constant voltage FC Voltage charge to current declines to 0.02C, rest for 10min, constant current 0.2C discharge to 2.8V, rest for 10min.Repeat above steps till continuously discharge capacity higher than 80% of the initial capacity of the battery.电池以0.2C 充饱,静置10 分钟,然后以0.2C 放空, 静置10 分钟。重复以上充放电循环直至放电容量低于初 始容量的80%。
绝对音高 (AP) 是指无需外界参考即可轻松识别乐音的能力,其神经基础尚不清楚。关键问题之一是这一现象背后是感知过程还是认知过程,因为感觉和高级大脑区域都与 AP 有关。为了整合对 AP 的感知和认知观点,我们在此研究了感觉和高级大脑区域对 AP 静息态网络的共同贡献。我们对大量 AP 音乐家 (n = 54) 和非 AP 音乐家 (n = 51) 的源级 EEG 进行了全面的功能网络分析,采用两种分析方法:首先,我们应用基于 ROI 的分析来检查听觉皮层和背外侧前额叶皮层 (DLPFC) 之间的连接,使用几种已建立的功能连接测量方法。这项分析重复了之前的一项研究,该研究报告了 AP 音乐家这两个区域之间的连接增强。其次,我们对相同的功能连接测量进行了基于全脑网络的分析,以更全面地了解可能涉及支持 AP 能力的大规模网络的大脑区域。在我们的样本中,基于 ROI 的分析没有提供听觉皮层和 DLPFC 之间 AP 特定连接增加的证据。全脑分析显示,AP 音乐家的三个网络连接增加,包括额叶、颞叶、皮层下和枕叶区域的节点。在感觉和大脑周边区域的高级区域都发现了网络的共同点。需要进一步研究来证实这些探索性结果。
・控制螺旋桨转速和测量容器内的流速,设定螺旋桨推力。保持螺旋桨推力恒定,从未发生空化的状态开始,逐渐降低测量室内部的静压,测量发生尖端涡流空化时的静压。 - 根据测量的静压和螺旋桨运行情况估算实际船速,并评估空化开始速度。
摘要。当代神经科学高度关注机器学习和网络分析的协同使用。事实上,网络神经科学分析大量利用了聚类指标和统计工具。在这种情况下,功能性近红外光谱 (fNIRS) 和脑电图 (EEG) 的综合分析提供了有关大脑电和血流动力学活动的互补信息。证据支持神经血管耦合介导大脑处理的机制。然而,人们对这些技术如何表示特定的神经活动模式还不太了解。在这里,我们使用源空间分析和图论方法,研究了同步 EEG 和 fNIRS 连接组之间、跨频带的静息状态大脑功能网络的拓扑特性。我们观察到,在全局级别分析中,两种模态的小世界拓扑网络特征。边缘分析指出,与 EEG 相比,氧合血红蛋白的半球间连接性增强,且各个频带没有差异。我们的结果表明,从 fNIRS 中提取的图形特征可以反映神经活动的短程和长程组织,并且能够表征静息状态下的大规模网络。需要进一步开发两种模态的综合分析,以充分利用每种模态的附加值。然而,本研究强调,可以采用多模态源空间分析方法来研究健康静息状态下的大脑功能,从而为未来在任务和病理学中的工作奠定基础,并有可能获得神经系统疾病的新型综合生物标志物。
神经反馈被认为是不同精神疾病的潜在补充疗法。这种方法的兴趣在于预测个人表现和结果。在本研究中,我们应用基于功能连接的建模,使用脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 模式来 (i) 研究静息状态连接是否可以预测情感神经反馈任务期间的表现,以及 (ii) 评估预测连接概况在 EEG 和 fNIRS 技术之间的相关程度。在健康受试者的额叶皮质上记录的 fNIRS 氧合血红蛋白和脱氧血红蛋白浓度以及受 alpha 频带调制的 EEG beta 和 gamma 波段(分别为 beta-m-alpha 和 gamma-m-alpha)用于估计来自每种神经成像模式的功能连接。对于每个连接矩阵,采用留一法选择相关边,将其汇总为“连接汇总分数”(CSS),并作为输入提交给支持向量回归器(SVR)。然后,使用训练后的 SVR 模型预测被排除在外的受试者的表现。使用 Pearson 相关性评估两种模态的 CSS 之间的线性关系。预测模型显示平均绝对误差小于 20%,fNIRS 氧合血红蛋白 CSS 与 EEG gamma-m-alpha CSS 显著相关(r = -0.456,p = 0.030)。这些结果支持了任务前电生理和血流动力学静息态连接是神经反馈表现的潜在预测因子,并且是耦合的。这项研究促使使用联合 EEG-fNIRS 连接作为结果预测因子,以及作为功能连接耦合研究的工具。