安费诺航空航天公司开发了加固型 VME64x,以响应军事领域对 VME64x 和 COTS 板与底盘利用的趋势。许多不同的公司制造“加固型 VME 卡”,但它们仍然使用标准 VME COTS(商用现货)连接器接口。在恶劣的军事环境中,COTS VME 连接器接口可能会发生故障,从而抵消卡的加固作用。安费诺加固型 VME64x 互连具有比标准连接器更坚固的接口,可提高抗震性。它满足了需要 2 级维护的恶劣环境连接器的需求。军用和商用航空、军用车辆和 GPS 系统是需要安费诺加固型 VME64x 连接器解决方案的市场示例。安费诺加固型 VME64x 连接器安装到标准 VME64x 卡和背板上,但不能与其他类型的 VME 商用连接器配接。特性和优点包括:• 金属外壳 - 直接安装到标准 VME 卡安装孔,为模块中的插件提供支撑和保护,并为背板提供额外的刚度• 金属外壳在触点周围形成法拉第笼,防止 ESD(静电放电)进入触点(仅限模块)• 坚固的触点系统• 一个统一外壳中有 3 个模块插件;每个都可以有不同的互连组合:• P1、P2 和 2mm 电气 P0
- 威布尔形状参数 TCR - 电阻温度系数 C - 电容值 THS - 热点温度 CR - 循环速率 V - 电压 D - 缺陷密度 VA - 施加的最大电压 D056 - 空军维护数据库 VR - 额定电压 DIP - 双列直插式封装 X - 电介质厚度 DPDT - 双刀双掷 AT - 温度变化 Ea - 阿伦尼乌斯关系中使用的激活能 EMP - 电磁脉冲 ESD - 静电放电 F - 故障 FLHP - 全马力 FSN - 联邦库存编号 I 电流 IC - 集成电路 IPB - 图解零件故障 K - 玻尔兹曼常数 L - 电感 S - 故障率 LC - 生命周期 MCTF - 平均故障周期数 MLB - 多层板 MTTF - 平均故障时间 NOC - 未分类 P - 电源 PC - 印刷电路 PCB - 印刷电路板 PGA - 引脚栅格阵列 PPM - 百万分率 PWB -印刷线路板 0 - 热阻 QPL - 合格产品列表 R - 电阻(单位:欧姆) RF - 射频 RIW - 可靠性改进保证 S - 应力比 SIP - 单列直插式封装 SMC - 表面贴装元件 SMT - 表面贴装技术 SPC - 统计过程控制 SPST - 单刀单掷 SR 串联电阻 SSR 固态继电器 T - 温度 TA - 环境温度
10 CFR 第 10 章 美国联邦法规 12-UPS 12 小时不间断电源 ACT 平均冷却剂温度 ADM 防稀释缓解措施 ALU 采集逻辑单元 AMI 事故监测仪器 AMS 气球测量系统 ANS 美国核学会 ANSI 美国国家标准协会 AOO 预期运行事件 APU 采集和处理单元 ASME 美国机械工程师学会 ATWS 未紧急停堆的预期瞬态 AUs 采集单元 BCMS 硼浓度测量系统 BOC 循环开始 [PM 确认] BTP 分支技术职位 CCF 常见原因故障 CCWS 部件冷却水系统 COT 堆芯出口热电偶 CRC 循环冗余校验 CRDCS 控制棒驱动控制系统 CRDM 控制棒驱动机构 CU 控制单元 CVCS 化学体积控制系统 DAS 多样化驱动系统 DAU 多样化驱动单元 DBE 设计基准事件 DCS 分布式控制系统 DNBR 偏离核沸腾比DPRAM 双端口随机存取存储器 EATs 紧急辅助变压器 EBS 额外硼化系统 ECCS 紧急核心冷却系统 EDG 紧急柴油发电机 EFW 紧急给水 EIS 核心外仪表系统 EIA 电子工业联盟 EMI 电磁干扰 EOC 循环结束 [PM 确认] EPSS 1E 级电源系统 ESD 静电放电 ESF 工程安全功能 ESFAS 工程安全功能驱动系统 EUPS 1E 级不间断
受低地球轨道星座和高空平台站 (HAPS) 的推动,太空光伏电力需求正在大幅增长,从数量和成本要求方面彻底改变了游戏规则。将地面光伏技术应用于太空似乎是解决这些工业和经济挑战的潜在解决方案。在架构方面,地面 PVA 使用单个前板覆盖嵌入粘合膜的几串电池,并通过层压一步组装而成。这种方法在工业上已经成熟,可抑制静电放电 (三相点) 的风险,并与多种材料和太阳能电池技术兼容:合格的 III-V [2]、商用现货 (COTS) 硅和新兴的钙钛矿。此外,这种方法为提高比功率 (W/m 2 ) 提供了空间,如地面光伏所示,据报道,电池与模块的效率比超过 90%。在材料方面,只要能找到性能妥协,就非常有望引入 COTS 组件。从这个意义上讲,辐射和热循环是选择过程中的关键老化测试。本文介绍了电子 COTS Si 电池辐射(1MeV)和层压 Si PVA 试样(- 140/+140 °C)热循环的实验结果。将利用电池互连行为的热机械模拟见解分析 Si PVA 热循环的实验结果。精心设计和选择 COTS Si PVA 组件可使 LEO 的 EOL AM0 效率达到 10-14% 的范围,迄今为止在约 2000 次循环中表现出稳定的性能;我们将讨论改进途径。
在适用的情况下,应对 CBS 执行以下发射测量: (a) 未纳入 CBS 的相关辅助设备的辐射发射应按照 CISPR 32 第 5 节和表 A.4 和 A.5 中定义的 B 类要求进行测量;或 EN 301 489-1 第 8.2 节; (b) CBS 直流电源端口的传导发射应按照 EN 301 489-1 第 8.3 节定义的限值进行测量; (c) 对于带有专用交流/直流电源转换器的 CBS,交流电源端口的传导发射应按照 CISPR 32 第 5 节和表 A.10 中定义的 B 类要求进行测量;或 EN 301 489-1 第 8.4 节。带有直流电源端口并由专用交流/直流电源转换器供电的设备定义为交流电源供电设备(CISPR 32 第 3.1.1 节); (d) 对于电流谐波发射,应适用 IEC/EN 61000-3-2 或 IEC/EN 61000- 3-12 的测试方法和限值; (e) 对于电压波动(闪烁),应适用 IEC/EN 61000-3-3 或 IEC/EN 61000- 3-11 的测试方法和限值;以及 (f) CBS 有线网络端口的传导发射应按照 CISPR 32 表 A.12 中定义的 B 类要求进行测量;或者 EN 301 489-1 中§8.7。 4.2.1.2 EMS 或抗扰度测试 可以根据 CISPR 35 或 EN 301 489-1 中§9 定义的要求对 CBS 进行以下抗扰度测试(如适用): (a) 设备外壳处的 RF 电磁场(80 MHz 至 6 GHz); (b) 设备外壳的静电放电; (c) 交流主电源端口以及电缆长度超过 3 米的信号端口、有线端口、控制端口和直流电源端口的快速瞬变(共模);
工作模式:连续工作 温度范围 工作:- 20 ... + 60 °C 存储:- 25 ... + 70 °C 海拔:< 2000 m 间隙和爬电距离 额定脉冲电压/污染等级:4 kV / 2 IEC 60664-1 绝缘测试电压 常规测试:AC 2.5 kV; 1 s EMC 静电放电:8 kV(空气) IEC/EN 61000-4-2 HF 辐射 80 MHz ... 1 GHz:10 V / m IEC/EN 61000-4-3 1 GHz ... 2.5 GHz:10 V / m IEC/EN 61000-4-3 2.5 GHz ... 2.7 GHz:10 V / m IEC/EN 61000-4-3 快速瞬变:2 kV IEC/EN 61000-4-4 浪涌电压 电源线之间:2 kV IEC/EN 61000-4-5 电线与地之间:4 kV IEC/EN 61000-4-5 HF 导线引导:10 V IEC/EN 61000-4-6 干扰抑制:极限值等级 B EN 55011防护等级 外壳:IP 40 IEC/EN 60529 端子:IP 20 IEC/EN 60529 外壳:符合 UL subject 94 标准的 V0 性能热塑性塑料 抗震性:振幅 0.35 mm 频率 10...55Hz IEC/EN 60068-2-6 耐候性:20 / 060 / 04 IEC/EN 60068-1 端子名称:EN 50005 电线连接:DIN 46228-1/-2/-3/-4 横截面积:2 x 2.5 mm 2 实心线或 2 x 1.5 mm 2 绞合线 剥线长度:10 mm 电线固定:带自升式夹紧件的扁平端子 IEC/EN 60999-1 固定扭矩:0.8 Nm 安装:DIN 导轨 IEC/EN 60715 重量:220 g
随着电子元件变得越来越精密,新的 ESD 挑战不断出现,静电放电 (ESD) 对敏感行业构成了越来越大的威胁。ESD 是由绝缘表面上的静电荷积累引起的,当高电场导致气隙介电击穿时,静电荷会突然放电。具有不同电子亲和力的材料的接触和分离会通过摩擦电效应引起电荷转移,摩擦电效应是主要的 ESD 产生因素。低湿度会通过阻止电荷消散而加剧 ESD 风险。ESD 会永久损坏敏感电子设备,例如电压阈值可能只有 100 V 的集成电路。除了电子设备之外,ESD 还会通过引发火灾和爆炸威胁易燃行业,通过设备干扰威胁医疗保健行业,通过破坏航空电子设备威胁航空航天系统。防静电服装和防护设备对于控制敏感环境中的 ESD 至关重要。理想的材料可以快速消散电荷,同时限制放电能量。但是,优化快速衰减和减少放电火花需要在传导和绝缘之间进行权衡。影响防静电性能的关键因素包括纤维成分、导电元件的网格间距、织物结构以及导电元件的集成方式。传统的标准化测试(如电阻率)对于现代非均质织物和实际条件有局限性。特定于应用的评估是理想的选择。将技术创新转化为扩展的测试和实施计划对于提高全球采用率至关重要。通过协调努力,这些织物有可能在技术进步不断加快的情况下减轻不断升级的 ESD 风险。本研究中的系统文献综述侧重于构造防静电纺织品时要考虑的结构、技术要素和测试方法。
在过去十年中,地球磁层中的航天器测量到的静电电位高达数十 kV 量级。太空观测结果显示太阳系中的自然物体也存在巨大电位。静电放电可能对航天器造成物质损坏和操作干扰。尘埃等自然物体可能受到干扰,其运动受到电磁力的影响。太空中物体的电位由各种充电电流之间的平衡决定。最重要的是等离子体粒子的电荷转移、光电发射和二次电子发射,有时其他充电机制也会起作用。物体的电荷和运动以及局部磁场和电场都会影响电流。电介质表面可能具有表面电位梯度,这可以通过产生势垒来影响电流平衡。这些过程针对太阳系和星际空间中的物体进行了评估。预期的平衡电位范围从电离层的负几十分之一伏到安静磁层和行星际空间的正几伏。然而,在热等离子体(如受扰磁层)中,尤其是在阴影表面上,可能会出现较大的负电位。星际空间中的电位可以是正的也可以是负的,这取决于当地辐射场和等离子体的特性。在已测量过航天器电位的地区,结果通常与这些预期一致。偏差可以归因于偏置或介电表面的影响,或天线等大型结构中的磁感应效应。已经开展了深入的研究工作,以测量材料特性、研究充电和放电过程、将电流平衡建模为真实的航天器配置,并获取太空中的更多数据。已经使用被动方法(例如仔细选择表面材料)和主动方法(例如发射带电粒子束)进行了航天器电位控制实验。该评论最后对充电效应可能发挥重要作用的天体物理应用进行了调查。
EOS/ESD 研讨会杰出论文奖(最佳演讲) EOS/ESD 研讨会杰出论文奖颁发给个人或团体,以鼓励他们在论文撰写和演讲中付出巨大努力,力求达到技术卓越。该奖项由 EOS/ESD 研讨会与会者投票选出,评选标准包括原创性、与实践或进一步研究的相关性、对概念、理论和发现的批判性分析以及演讲的清晰度。奖项分为制造和设备类别。 1983 年“室内空气电离系统,比 40% 相对湿度更好的替代方案” CF Mykkanen 和 DR Blinde 1984 年“防静电袋在筛选半导体元件免受 ESD 瞬变影响方面的有效性” TIE GC Holmes 1984 年“现实而系统的 ESD 控制计划” GT Dangelmayer 1985 年“一种实时检查集成电路中表面下 EOS/ESD 损伤的技术” CT Amos 和 CE Stephens 1986 年“厚氧化物器件在工艺变化下的 ESD 性能” RA Mc Phee、C. Duvvury、RN Rountree、H. Domingos 1987 年“可抵御带电器件模型 (CDM) 的 ESD 保护结构” LR Avery TIE 1988 年“适用于先进 CMOS 工艺的工艺容错输入保护电路” Robert Rountree、Charvaka Duvvury、Tatsuro Maki、Harvey Stiegler 1988 “摩擦电和表面电阻率不相关” Steven L. Fowler 1989 “理解粉红聚合物” Marvin R. Havens 1990 “4 Mbit DRAM 的静电放电保护” Mark D. Jaffe 1991 “实施基于计算机的 ESD 培训:比较计算机方法与传统课堂技术的案例研究” Joanne Woodward-Jack
5.2.3.6 方法 40(以前的方法 IA)- 按要求使用防腐剂进行防水保护.............................................................................................16 5.2.3.6.1 方法 41(以前的子方法 IA-8)- 防水气袋,密封.............................................................................................................16 5.2.3.6.2 方法 42(以前的子方法 IA-14)- 容器,防水气袋,密封,容器.............................................................................17 5.2.3.6.3 方法 43(以前的子方法 IA-16)- 漂浮防水气袋,密封....................................................................................................17 5.2.3.6.4 方法 44(以前的子方法 IA-13)- 硬质容器(非金属),密封....................................................................................................17 5.2.3.6.5 方法 45(以前的子方法 IA-5)- 硬质金属容器, 5.2.3.7 方法 50(以前的方法 II)- 用干燥剂进行防水蒸气保护.........................................................................................................18 5.2.3.7.1 方法 51(以前的子方法 IIc)- 防水蒸气袋,密封.........................................................................................................20 5.2.3.7.2 方法 52(以前的子方法 IIb)- 容器,防水蒸气袋,密封,容器.............................................................................20 5.2.3.7.3 方法 53(以前的子方法 IIa)- 漂浮防水蒸气袋,密封.............................................................................................21 5.2.3.7.4 方法 54(以前的子方法 IIf)- 硬质容器(非金属),密封.........................................................................................21 5.2.3.7.5 方法 55(以前的子方法 IId)- 硬质金属容器,密封.............................................................................................21 5.2.4 具有特定特性物项的军事保存要求.....................................................................................................21 5.2.4.1 静电放电敏感(ESDS)物项.....................................................................21 5.2.4.2 可拆卸物项.............................................................................................21 5.2.4.3 柔性卷绕物项.............................................................................................22 5.2.4.4 有轮子的物项....................................................................................................22 5.2.4.5 笼式或阻尼式物项....................................................................................22 5.2.4.6 带支架的物项....................................................................................................22 5.2.4.7 橡胶和合成橡胶物项....................................................................................22 5.2.4.8 危险物项....................................................................................................22 5.3 A 级和 B 级包装要求......................................................................22
