图 1. 超声触发非人类灵长类动物深部脑区纳米粒子载体的药物释放。A) 概念。远程应用聚焦超声能够选择性地从纳米粒子载体中释放药物,特别是在其焦点处。B) 纳米粒子配方。纳米粒子由高沸点的全氟碳 (PFC)——全氟辛基溴化物组成。全氟辛基溴化物赋予纳米粒子高稳定性和生物安全性 [20-22]。纳米粒子使用聚乙二醇/聚乳酸共聚物基质进一步稳定。C) 执行任务的 NHP 深部脑回路中的超声控制释放。256 元件超声换能器阵列 [25,26] 以编程方式将超声波传送到 NHP 的深部脑区,从而能够在特定脑区选择性释放药物。该阵列安装在植入的头柱中,以确保换能器相对于头部在每次治疗中的可重复定位。 D) 视觉选择任务。一个目标出现在屏幕左侧,另一个出现在屏幕右侧,两个目标之间有短暂的、可控的延迟。受试者看向首先出现的目标。E) 使用 MRI 测温法验证超声对左侧和右侧外侧膝状体 (LGN) 的定位。F) 大脑半球特定表示。左/右 LGN 将有关右/左视觉半场的视觉信息传递到初级视觉皮层。G) 3 分钟基线 (棕色) 和右侧 LGN 中释放异丙酚 (红色) 后 3 分钟期间的心理测量曲线示例。数据采用 S 形曲线拟合。此后,释放后的选择偏差被量化为在基线期间建立的同等偏好点的选择比例 (黑色箭头)。
大多数儿童比成年人对冠状病毒诱导的2019年疾病(COVID-19)的影响不大,因此更难逐步研究。在这里,我们对血液和粘膜组织中严重急性呼吸综合征2(SARS-COV-2)感染的早期免疫反应提供了新生儿非人类灵长类动物(NHP)的深度分析。此外,我们还提供了与SARS-COV-2感染的成人NHP的比较。与在大多数情况下发生中度肺部病变的成年NHP相比,新生儿的感染导致了轻度疾病。在与病毒RNA负荷增加的同时,我们观察到了血液中早期先天反应的发展,如RNA测序,流量细胞术和细胞因子纵向数据分析所证明。此反应包括存在抗病毒IFN基因特征,持续且持久的NKT细胞群,平衡的外周和粘膜IFN-G /IL-10细胞因子反应以及伴有抗SARS-COV-2抗体反应的B细胞的增加。病毒动力学和免疫反应与咽粘膜和直肠粘膜中微生物群体组成的变化一致。在母亲中,尽管与SARS-COV-2暴露的新生儿非常紧密接触,但病毒RNA载荷接近定量限制。这项试验研究表明,新生儿NHP是小儿SARS-COV-2感染的相关模型,可以洞悉婴儿抗SARS-COV-2免疫反应的早期步骤。
在特定区域选择性释放药物将使许多科学和医学领域受益。通过聚焦超声(远程应用的深度穿透能量)激活的纳米颗粒药物载体可提供此类选择性干预。在这里,我们开发了稳定的、超声响应的纳米颗粒,可用于在非人类灵长类动物中有效和安全地释放药物。纳米颗粒用于在深层大脑视觉区域释放丙泊酚。释放可逆地调节受试者的视觉选择行为,并且特定于目标区域和释放的药物。钆增强 MRI 成像显示血脑屏障完好无损。血液抽取显示正常的临床化学和血液学。总之,这项研究提供了一种安全有效的方法,可以在选定的深层大脑区域按需释放药物,其剂量足以调节行为。
1。美国纽约州哥伦比亚大学医学中心神经科学系。 2。 Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。 Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。 4。 加利福尼亚大学伯克利分子和细胞生物学系5。 麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。 马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。 霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。 Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。美国纽约州哥伦比亚大学医学中心神经科学系。2。Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。 Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。 4。 加利福尼亚大学伯克利分子和细胞生物学系5。 麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。 马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。 霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。 Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。4。加利福尼亚大学伯克利分子和细胞生物学系5。麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。IMEC,鲁汶,比利时15。卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。加利福尼亚州帕洛阿尔托市斯坦福大学生物工程系22。加利福尼亚州帕洛阿尔托市斯坦福大学医学院神经外科系23。霍华德·休斯医学院,伯克利,加利福尼亚州24。马里兰州巴尔的摩约翰·霍普金斯大学生物医学工程系
1 Azuma等。“人类肝细胞在fah - / - /rag2 - / - /il2rg - / - 小鼠中的稳健膨胀。”自然生物技术(2007)。2冯·施文(Von Schaewen)等。“通过病毒适应扩大丙型肝炎病毒的宿主范围。”MBIO(2016。 3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。MBIO(2016。3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。3 Valenti等。“ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。”Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。Hepatology(2010)。4 Srinivasan等。“肝磷酸合成酶1-缺乏的肝脏小鼠模型。”遗传代谢疾病杂志(2019年)。5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。5 Hu,Huili等。“功能小鼠和人肝细胞作为3D器官的长期扩张。”Cell(2018)。Cell(2018)。
双相情感障碍(BD)的特征是极端情绪波动,从躁狂/易感发作到抑郁发作。这些发作的严重程度,持续时间和频率可能会在个人之间差异很大,从而显着影响生活质量。患有BD的人几乎一生都经历了情绪症状,尤其是抑郁症,以及相关的临床维度,例如Anhedonia,疲劳,自杀,焦虑和神经疗法症状。持续的情绪症状与过早死亡率,加速衰老和抗药性抑郁症患病率升高有关。最近的努力扩大了我们对BD神经生物学的理解以及可能有助于跟踪临床结果和药物开发的下游靶标。然而,作为一种多基因障碍,BD的神经生物学很复杂,涉及几个细胞器和下游靶标(前,后,突触外和突触外)的生物学变化,包括线粒体功能障碍,氧化应激,氧化应激,单氨基氨基疗法和谷胱甘肽症状系统的变化,以及较低的神经元素级别,并改变了神经际较低的系统,并改变了神经胰蛋白质的变化。因此,该领域已朝着确定更精确的神经生物学靶标,而神经生物学目标又可能有助于开发个性化的方法和更可靠的生物标志物来进行治疗预测。在情绪障碍中还测试了针对神经传递以外的神经生物学途径的多种药理学和非药物方法。本文回顾了BD中非规范途径中不同神经生物学靶标和病理生理发现,这些发现可能会提供支持药物开发并识别新的,临床上相关的生物学机制的机会。这些包括:神经炎症;线粒体功能;钙通道;氧化应激;糖原合酶激酶3(GSK3)途径;蛋白激酶C(PKC);脑衍生的神经营养因子(BDNF);组蛋白脱乙酰基酶(HDAC);和嘌呤能信号通路。
消除受感染个体的HIV DNA仍然是医学中的挑战。在这里,我们证明了SIV感染猕猴的静脉接种,这是一种良好接受的HIV感染的非人类灵长类动物模型,具有与腺相关的病毒9(AAV9)-CrispR/CAS9基因编辑构建体,设计用于消除葡萄植物和精确分布的繁殖分布的分布量的繁殖分布,并将其精确地分布成碎片,使其碎片的分布形成,并进行了精确的分布。来自感染的血细胞和组织的基因组的DNA已知为病毒储存库,包括淋巴结,脾脏,骨髓和大脑等。因此,AAV9- CRISPR治疗导致血液和组织中病毒DNA百分比降低。这些概念验证观察结果为消除诊所中的艾滋病毒水库提供了有希望的步骤。
目的尽管对其作用机制尚不了解,但深部脑刺激 (DBS) 是治疗不同神经系统疾病的有效方法。非人灵长类动物 (NHP) 的使用在推动该领域的发展方面一直具有重要意义,并且为揭示 DBS 的治疗机制提供了独特的机会,为优化当前应用和开发新应用开辟了道路。为了提供参考,使用 NHP 的研究应使用合适的电极植入工具。在本研究中,作者报告了使用市售无框立体定向系统 (微靶向平台) 瞄准 NHP 中不同深部脑区域的可行性和准确性。方法在七个 NHP 的丘脑底核或小脑齿状核中植入 DBS 电极。为每只动物设计一个微靶向平台并用于引导电极的植入。每只动物在术前都获取了影像学研究数据,随后由两名独立评估人员进行分析,以估计电极放置误差 (EPE)。同时还评估了观察者之间的差异。结果分别估计了 EPE 的径向和矢量分量。EPE 矢量的大小为 1.29 ± 0.41 毫米,平均径向 EPE 为 0.96 ± 0.63 毫米。观察者之间的差异可以忽略不计。结论与传统的刚性框架相比,这些结果表明,与传统的刚性框架相比,该商用系统适用于增强 DBS 导线在灵长类动物脑内的手术插入。此外,我们的研究结果开辟了在灵长类动物中进行无框架立体定位的可能性,而无需依赖基于术中成像的昂贵方法。
动物命令灵长类动物carnivora perissodactyla artiodactyla xenarthra partantra天日90 60 60 90 90 90 60测试coproparasitic i x x x x x x x x x x x x x x x x x x x x x - x x - x x - covid e x x x x x x x x x x x x x x x x x x x x X X X X X X型疟疾 – – – Adenovirus I – X – – – Feline immunodeficiency I – X – – – Feline leukemia I – X – – – Parvovirus I – X – – – Canine coronavirus I – X – – – Giardia I X – X X – Entamoeba E X – – – – Cryptosporidium E X – – – – Toxoplasmosis E X – – – – Leishmania I X X X X X Anaplasma I X X X X X X ehrlichia I X X X X X X X X X X X X X X X X X X X *I,Arcas中的内部测试; E,外部实验室测试
摘要:近年来,研究人员和制造商已开始研究使自动驾驶汽车(AV)与附近的行人互动的方法,以补偿缺乏人类驾驶员的情况。这些努力中的大多数侧重于外部人机界面(EHMI),使用不同的模式,例如光模式或公路预测,以传达AV的意图和意识。在本文中,我们研究了通过EHMIS传达情绪的情感界面的潜在作用。迄今为止,关于情感界面可以在支持AV-Pedestrian相互作用中扮演的角色知之甚少。但是,从家庭同伴到户外空中机器人的许多较小的社会机器人都采用了情绪,以无人机的形式使用。为了为情感AV-Pedestrian界面建立基础,我们回顾了2011年至2021年发表的25篇文章中非人类机器人的情感表达。根据审查的发现,我们提出了一系列设计情感AV-Pedestrian界面的考虑因素,并突出了在未来的研究中调查这些机会的途径。