过去 30 年来,太空用陀螺仪技术不断发展,并取得了显著成果,产品应用十分广泛。在欧洲,光纤陀螺仪 (FOG) 技术为卫星应用提供了最高性能,目前正在满足所有当前任务需求。陀螺仪领域的高性能部分由美国的半球形谐振陀螺仪 (HRG) 技术主导。在欧洲,这项技术也(但最近)在地面应用中实现了非常高的性能。新陀螺仪技术领域是一个充满活力的战略研究领域,由众多高精度海洋、陆地和航空应用引领。目前应用于角运动和线性运动传感的一项有前途的技术是原子干涉仪 (AI),但尚未转化为产品。基于冷原子干涉 (CAI) 的陀螺仪已证明其性能指标比 FOG 产品高出约 2 个数量级。对于其他类型的用途,磁流体动力 (MHD) 技术可以在有限的体积和质量内实现非常高的带宽测量,从而实现镜子的主动视线稳定。
AOA,攻角;AVUM,姿态与游标上模块;BC,弹道系数,定义为质量/(阻力系数*参考面),kg/m 2 ;CAD,计算机辅助设计;CGG,冷气发生器;COG,重心;D&L,下降和着陆;ESA,欧洲航天局;F-TPS,柔性热防护系统;FEM,有限元模型;FS,前护盾;GNC,制导导航与控制;H2020,“地平线 2020”是实施创新联盟的金融工具,该联盟是欧洲 2020 的旗舰计划,旨在确保欧洲的全球竞争力;HIAD,高超音速充气式气动减速器;IAD,充气式气动减速器;IOD,在轨演示器;IXV,中型实验飞行器(再入演示器);MAR,空中回收;MOLA,火星轨道器激光高度计; NASA,美国国家航空航天局;SRP,超音速反向推进;SSO,太阳同步轨道;TPS,热防护系统;TRL,技术就绪水平;ULA,联合发射联盟;VEGA,欧洲先进一代火箭矢量简介
拉里·M·沃泽尔博士拥有 32 年的杰出军事生涯,于 1999 年以陆军上校身份退役。他毕业于美国陆军战争学院,在佐治亚州哥伦布学院获得学士学位,在夏威夷大学获得硕士和博士学位。他在军事领域的最后一个职位是美国陆军战争学院战略研究所所长。他目前是美国外交政策委员会亚洲安全高级研究员。在海军陆战队服役三年并上过大学后,沃泽尔博士于 1970 年开始职业生涯,担任美国陆军安全局中士,负责评估中国的政治和军事事件,并在越南战争期间收集有关中国在老挝和越南军事活动的通讯情报。在步兵军官候选学校、游骑兵和空降训练之后,他担任了四年的步兵军官。 1977 年,他重返军事情报部门。在印度太平洋战区,他曾在第 27 海军陆战队第 3 营、泰国第 7 无线电研究野外站、韩国第 9 步兵团第 1 营、美国太平洋司令部服役,并曾驻新加坡国防武官处任职,并曾两次担任美国驻华大使馆武官。退役后,沃泽尔博士曾担任亚洲研究中心主任,后担任美国传统基金会副总裁。2001 年 11 月至 2020 年 12 月期间,他担任国会任命的中美经济与安全审查委员会委员。
免责声明:本出版物由加拿大国防研究与发展局(国防部下属机构)编写。本出版物中包含的信息是通过最佳实践和遵守负责任的科学研究行为的最高标准得出和确定的。本信息仅供国防部、加拿大武装部队(“加拿大”)和公共安全合作伙伴使用,并可在获得许可的情况下与学术界、工业界、加拿大盟友和公众(“第三方”)共享。第三方使用、依赖或基于本出版物做出的任何决定均由其自行承担风险和责任。加拿大对因使用或依赖本出版物而产生的任何损害或损失不承担任何责任。
本文件由国会研究服务处 (CRS) 编制。CRS 是国会委员会和国会议员的无党派共享工作人员。其完全按照国会的要求和指导开展工作。除了让公众了解 CRS 就其机构角色向国会议员提供的信息外,CRS 报告中的信息不应用于其他目的。CRS 报告是美国政府的作品,在美国不受版权保护。任何 CRS 报告均可完整复制和分发,无需获得 CRS 许可。但是,由于 CRS 报告可能包含来自第三方的受版权保护的图像或材料,因此如果您想复制或以其他方式使用受版权保护的材料,则可能需要获得版权所有者的许可。
俄罗斯和中国都声称已经部署了高超音速打击导弹,以对抗美国正在发展的弹道导弹防御能力。俄罗斯表示,其 Avangard 高超音速滑翔飞行器据称具有核能力,射程为 6,000 公里,现已与空射的 Kinzhal 弹道导弹一起投入使用。据信俄罗斯还在开发 Zircon 高超音速巡航导弹、GZUR 制导导弹和苏霍伊 Su-57 飞机的空射武器。中国在 2019 年的阅兵式上展示了其 DF-17 高超音速滑翔飞行器,但目前尚不清楚该导弹是原型还是已经服役。美国声称中国也在测试一种具有洲际射程的高超音速滑翔飞行器,并开发了一种可以装备高超音速武器的弹道导弹。5
现代 CFD 技术为风洞升级提供了新的机会。在这里,我们应用 RANS 模型来计算 ONERA Meudon 中心 S3Ch 跨音速风洞回路的流量。通过在风扇位置实施驱动盘以及在沉降室热交换器位置实施总压力和温度损失来设置流量。该方法针对沉降室和测试段中可用的一组简化实验流量数据进行了验证。将结果与标准设计指南一起考虑,以确定对该回路的修改,以提高流动质量。当风洞在不久的将来移至不同位置时,将实施新回路。另一部分工作致力于计算测试段的自适应顶壁和底壁。作为升级当前工具的尝试,该工具使用测试段内流动的线性化势模型,我们考虑了 RANS 方法并定义了一个新的优化过程,以尽量减少壁对目标流动的影响(与自由飞行条件下的流动相比)。新方法应用于跨音速条件下机翼翼型的特殊情况,仅考虑模拟数据时就显示出接近完美的校正。
高超音速武器主要有两种类型:高超音速巡航导弹 (HCM) 和高超音速滑翔飞行器 (HGV)。北约科学技术组织等一些机构还将高超音速“后隐形”攻击和侦察机列入其中,预计到 2030 年代问世。HCM 是现有巡航导弹的加速版,飞行高度为 20-30 千米。它们由称为超音速燃烧冲压发动机的吸气式喷气发动机推进。这些“超燃冲压发动机”在燃烧阶段之前将进入的空气压缩在一个短漏斗中,使发动机在高速下极其高效地运转。由于超燃冲压导弹直接从大气中获取必要的氧气,因此体积更小、机动性更强。相比之下,HGV 则是无推进式,依靠火箭助推滑翔技术升入高层大气。在 40-100 公里的高度释放后,它们以高超音速飞行,无需关闭动力即可打击目标。它们能够机动并在不同高度释放,这使得它们的轨迹难以预测和计算。
技术军备竞赛很少会导致在武器开发方面做出理性、具有成本效益的决策。美国对相关陷阱有着丰富的经验,尤其是在导弹方面。例如,在 20 世纪 60 年代,美国试图对抗假定的苏联导弹防御系统,但其系统“为时过早、过度,甚至完全不合适”,因为预期的苏联防御系统从未实现(Spinardi 1994,175)。在 20 世纪 80 年代,战略防御计划旨在建立强大的国土防御系统以抵御苏联弹道导弹,但它却导致投资于一些技术,独立技术评估发现这些技术在很大程度上是推测性的,并最终因此而放弃(Bloembergen 等人 1987;Carter 1984)。
