摘要:高接触电阻一直是开发高性能过渡金属二硫属化物 (TMD) 基 p 型晶体管的瓶颈。我们报道了简并掺杂的少层 WSe 2 晶体管,其接触电阻低至 0.23 ± 0.07 k Ω·μ m/接触,其使用氯化铂 (IV) (PtCl 4 ) 作为 p 型掺杂剂,该掺杂剂由与互补金属氧化物半导体 (CMOS) 制造工艺兼容的离子组成。栅极长度为 200 nm 的顶栅器件表现出良好的开关行为,这意味着掺杂剂扩散到栅极堆栈中并不显著。这些器件在空气中放置 86 天后未进行任何封装,同时在 78 K 温度下保持简并掺杂状态,且压力低于 10 − 5 Torr,突显了掺杂剂的稳定性。所提出的方法阐明了对具有减薄肖特基势垒宽度的晶体管进行图案掺杂以获得低接触电阻器件的高稳定性方法的可用性。关键词:二硒化钨、电荷转移掺杂、场效应晶体管、二维材料、高稳定性
倒装芯片式集成电路的热管理通常依赖于通过陶瓷封装和高铅焊料栅格阵列引线进入印刷线路板的热传导作为散热的主要途径。这种封装配置的热分析需要准确表征有时几何形状复杂的封装到电路板的接口。鉴于六西格玛柱栅阵列 (CGA) 互连的独特结构,使用详细的有限元子模型从数字上推导出有效热导率,并与传统 CGA 互连进行比较。一旦获得有效热导率值,整个互连层就可以表示为虚拟的长方体层,以纳入更传统的“闭式”热阻计算。这种方法为封装设计师提供了一种快速而可靠的方法来评估初始热设计研究权衡。
全栅环栅 (GAA) 是一种最佳器件配置,它能静电控制沟道长度最窄的晶体管 2,并最大限度地减少器件关断时的漏电流,从而使器件在每次切换时耗散更少。GAA 几何形状有多种可能,并且已经在水平 3 或垂直配置中得到验证。4 – 7 尽管技术解决方案有望最终将晶体管的栅极长度 L g 缩小到几纳米 5,但从一维(长栅极或大宽度)到全尺寸缩放的晶体管的转变对器件操作的影响仍有许多悬而未决的问题。其中,应明确解决所制造器件的质量和可能导致晶体管操作不良或电性能分散的波动源,以提出最终集成的解决方案。但是,经典的表征技术(如迁移率提取)不足以提供有关最终缩放时器件质量的信息,因为迁移率可能会在如此小的栅极长度下崩溃。 8 – 11 低频噪声可以成为一种非常精确的技术,用于表征低噪声纳米器件中的电子传输。12 , 13
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
二维(2D)半导体在高性能电子中的实际应用需要与大规模和高质量的电介质进行整合 - 然而,由于它们的悬空无键,这是迄今为止的挑战。在这里,我们报告了一种干介电整合策略,该策略使晶圆尺度和高κ电介质在2D半导体之上转移。通过使用超薄缓冲层,可以预处理下沉积,然后在MOS 2单层的顶部进行机械干燥转移。转移的超薄电介质纤维可以保留晶圆尺度的晶格和均匀性,而无需任何裂缝,表明高达2.8μf/cm 2的电容,等效的氧化物厚度降至1.2 nm,泄漏率降至1.2 nm,泄漏的电源量〜10-7 A/cm 2。Fab的顶栅MOS 2晶体管显示出固有的特性,而没有掺杂效应,启示率为〜10 7,子阈值向下旋转至68 mV/ dec,最低的界面状态为7.6×10 9 cm-2 ev-1。我们还表明,可扩展的顶门阵列可用于构建功能逻辑门。我们的研究为使用具有良好控制厚度,均匀性和可扩展性的行业兼容的ALD工艺提供了可行的途径。
晶体硅 • 多晶硅生产 • 硅锭和硅片:直拉法 (Cz)、定向凝固 (DS)、无切口技术,可生产 Cz 和 DS 等效物 • 电池转换:通过丝网印刷、电镀和无主栅技术生产单面和双面 PERC、PERT、HJT 和 IBC • 模块组装:标准接线和串接、无主栅和叠瓦
Ting-Ting Wang 1,2 , Sining Dong 1,2,* , Chong Li 1,2 , Wen-Cheng Yue 1,2 , Yang-Yang Lyu 1,2 , Chen-Guang Wang 1,2 , Chang-Kun Zeng 1 , Zixiong Yuan 1,2 , Wei Zhu 3 , Zhi-Li Xiao 4, 5 , Xiaoli Lu 6 , Bin Liu 1 , Hai Lu 1 , Hua-Bing Wang 1,2,7 , Peiheng Wu 1,2,7 , Wai-Kwong Kwok 4 and Yong-Lei Wang 1,2,7,*
摘要 尽管编程对现代社会至关重要,但代码理解的认知和神经基础在很大程度上仍是未知的。编程语言可能会“回收”最初为自然语言开发的神经认知机制。或者,代码理解可能依赖于与其他文化发明的符号系统(如形式逻辑和代数等符号数学)共享的额顶叶网络。专业程序员(平均 11 年编程经验)在接受 fMRI 时执行代码理解和记忆控制任务。同样的参与者还执行了形式逻辑、符号数学、执行控制和语言定位器任务。左侧额顶叶网络被招募用于代码理解。该网络内的活动模式区分了“for”循环和“if”条件代码函数。就底层神经基础而言,代码理解与形式逻辑和数学重叠程度较小。与执行过程和语言的重叠程度较低,但语言和代码的侧向性在个体之间共变。包括代码在内的文化符号系统依赖于独特的额顶叶皮层网络。
2 (1 − D cos ϕ ) 其中 ϕ 是每个母顶部和反顶部静止框架中轻子方向之间的角度。