开发高产营养水稻是缓解发展中国家微量营养素缺乏问题,特别是涉及锌和铁 (Fe) 缺乏的人类营养不良问题,并实现更好应用的一种方法。Fe 和 Zn 等微量营养素的运输主要通过烟胺合酶 (OsNAS) 基因家族调控,而产量是一种涉及多个基因座的复杂性状。通过 CRISPR (成簇的规律间隔的短回文重复序列)-Cas9 进行基因组编辑,重点关注 OsNAS2 启动子,特别是删除位置 -933 处的顺式调控元件 ARR1AT,以增强籽粒和单株植物中 Zn 的积累。结果表明,我们的启动子编辑增加了单株植物的 Zn 浓度。证据还表明,每个主穗的小穗数量增加可导致单株籽粒增加。这些性状在“无转基因”和纯合植物后代中遗传。需要进行进一步研究来验证田间条件下的性状表现并阐明小穗增加的原因。
顺式调控元件编码基因组蓝图,确保基因表达的正确时空模式,这对于适当的发育和对环境的反应必不可少。越来越多的证据表明,基因表达的变化是真核生物表型新颖性的主要来源,包括哺乳动物的疾病和癌症等急性表型。此外,在较长的进化时间尺度上影响顺式调控序列的遗传和表观遗传变异已成为形态分化和局部适应研究中反复出现的主题。在这里,我们讨论了各种顺式调控元件的功能和用于识别各种顺式调控元件的方法,以及它们在植物发育和对环境的反应中的作用。我们重点介绍了利用植物发育和环境反应背后的顺式调控变异进行作物改良的机会。尽管对植物顺式调控机制的全面了解落后于对动物的了解,但我们展示了一些突破性的发现,这些发现深远影响了植物生物学并塑造了对真核生物转录调控的整体理解。
tim-3被认为是癌症免疫疗法的靶标。在T细胞中,抑制性和激活功能已归因于该分子。 其作用可能取决于T细胞的状态以及能够执行功能配对的相互作用伙伴的存在。 已提出癌胚抗原相关的细胞粘附分子(CEACAM1)来结合TIM-3并调节其功能。 使用T细胞报告程序平台,我们确定了CEACAM1介导的抑制作用,但是CEACAM1在功能上没有参与TIM-3。 TIM-3和CECAM1共表达仅限于激活的T细胞的一小部分。 此外,在广泛的结合研究中获得的结果不支持TIM-3和CECAM1之间的相互作用。 源自tim-3诱导的抑制性信号传导的细胞质序列。 我们的结果表明TIM-3功能与CEACAM1无关,并且该受体具有促进人T细胞中抑制性信号传导途径的能力。在T细胞中,抑制性和激活功能已归因于该分子。其作用可能取决于T细胞的状态以及能够执行功能配对的相互作用伙伴的存在。癌胚抗原相关的细胞粘附分子(CEACAM1)来结合TIM-3并调节其功能。使用T细胞报告程序平台,我们确定了CEACAM1介导的抑制作用,但是CEACAM1在功能上没有参与TIM-3。TIM-3和CECAM1共表达仅限于激活的T细胞的一小部分。此外,在广泛的结合研究中获得的结果不支持TIM-3和CECAM1之间的相互作用。源自tim-3诱导的抑制性信号传导的细胞质序列。我们的结果表明TIM-3功能与CEACAM1无关,并且该受体具有促进人T细胞中抑制性信号传导途径的能力。
tim-3被认为是癌症免疫疗法的靶标。在T细胞中,抑制性和激活功能已归因于该分子。 其作用可能取决于T细胞的状态以及能够执行功能配对的相互作用伙伴的存在。 已提出癌胚抗原相关的细胞粘附分子(CEACAM1)来结合TIM-3并调节其功能。 使用T细胞报告程序平台,我们确定了CEACAM1介导的抑制作用,但是CEACAM1在功能上没有参与TIM-3。 TIM-3和CECAM1共表达仅限于激活的T细胞的一小部分。 此外,在广泛的结合研究中获得的结果不支持TIM-3和CECAM1之间的相互作用。 源自tim-3诱导的抑制性信号传导的细胞质序列。 我们的结果表明TIM-3功能与CEACAM1无关,并且该受体具有促进人T细胞中抑制性信号传导途径的能力。在T细胞中,抑制性和激活功能已归因于该分子。其作用可能取决于T细胞的状态以及能够执行功能配对的相互作用伙伴的存在。癌胚抗原相关的细胞粘附分子(CEACAM1)来结合TIM-3并调节其功能。使用T细胞报告程序平台,我们确定了CEACAM1介导的抑制作用,但是CEACAM1在功能上没有参与TIM-3。TIM-3和CECAM1共表达仅限于激活的T细胞的一小部分。此外,在广泛的结合研究中获得的结果不支持TIM-3和CECAM1之间的相互作用。源自tim-3诱导的抑制性信号传导的细胞质序列。我们的结果表明TIM-3功能与CEACAM1无关,并且该受体具有促进人T细胞中抑制性信号传导途径的能力。
摘要 顺式调控序列的进化取决于它们如何影响基因表达,并促使人们识别和预测导致物种内和物种间表达差异的顺式调控变体。虽然在将顺式调控变体与表达水平联系起来方面取得了很大进展,但基因激活和抑制的时间对顺式调控序列的进化也可能很重要。我们研究了双生期转变期间酵母菌物种内和物种间的等位基因特异性表达 (ASE) 动态,发现基因表达动态中存在明显的顺式作用变化。物种内 ASE 与基因间变体相关,ASE 动态与插入和缺失的关联性比与 ASE 水平的关联性更强。为了完善这些关联,我们使用高通量报告基因检测来测试启动子区域和单个变体。在重现内源表达的区域子集中,我们识别并表征了影响表达动态的顺式调控变体。在不同物种之间,嵌合启动子区会产生新的模式,并表明基因表达动力学的进化受到限制。我们得出结论,顺式调控序列的变化可以调节基因表达动力学,而表达动力学与表达其他方面之间的相互作用与顺式调控序列的进化有关。
摘要 顺式调控元件 (CRE) 是一小段 (~5 – 15 个碱基对) DNA,能够与转录因子结合并影响附近基因的表达。这些区域对于研究表型和基因型之间关系的任何人来说都非常有趣,因为这些序列通常决定基因的时空表达。事实上,已知基因型和表型之间的几种关联信号位于蛋白质编码区之外。因此,理解进化生物学的关键在于在当前和未来的基因组组装中对它们进行表征。在本综述中,我们介绍了一些 CRE 变异如何促进表型进化的近期例子,讨论了基因组非编码区域所经历的选择压力的证据,并考虑了几项关于植物可及染色质区域的研究以及它们能告诉我们有关 CRE 的什么信息。最后,我们讨论了当前测序技术的进展将如何提高我们对 CRE 变异的认识。
如该拟议法律所附的解释性报告所述,该法案旨在更新分别自 2001 年(2001 年 3 月 12 日欧洲议会和理事会第 2001/18/EC 号指令)和 2003 年(2003 年 7 月 8 日第 224 号立法法令)起实施的有关转基因生物 (GMO) 的现行立法。事实上,科学已经开发出克服转基因机制的技术,转基因是通过在生物体的 DNA 中引入不同于生物体本身的 DNA 序列来创造生物体。本提案法所指的新基因组技术(NGT)是通过定点诱变进行的基因组编辑技术,也称为定点或靶向诱变(以下称为基因组编辑)和顺式基因编辑。第一种可以在不引入新遗传物质的情况下精确修改 DNA,欧洲食品安全局 (EFSA) 将其定义为位点特异性核酸酶 1 型 (SDN-1) 和位点特异性核酸酶 2 型 (SDN-2)。基因组编辑使用核酸酶类蛋白质(可切割 DNA 的酶)和短 RNA 序列,可引导核酸酶到达基因组中的特定目标点,可能导致基因失活或将自然界中已经存在的修饰引入其序列中。在这两种情况下,获得的突变相当于可以自发发生的突变。农作物物种内的正常生物多样性就是由于这种突变而产生的。最著名的基因组编辑技术被称为“CRISPR/Cas9”,因为它使用了 Cas9 蛋白,由两位研究人员——法国女性 Emmanuelle Charpentier 和美国人 Jennifer Doudna 于 2012 年开发,这一发现为她们赢得了 2020 年诺贝尔化学奖。CRISPR/Cas9 基因组编辑技术被称为“开启生命科学新时代的基因剪刀”。事实上,通过基因组编辑,可以将在其他品种、野生个体或相关物种中发现的任何有利突变引入栽培品种中,而无需引入新基因,最重要的是避免“传统”的漫长的杂交和回交实践:引入的唯一突变就是期望获得的突变。同源性是指从同一物种或者性相容的相关物种的供体生物中插入遗传物质,例如基因。遗传物质未经修改就被插入。即使同一基因拷贝数的变化,经过轻微的修改,也是每个物种中存在的正常生物多样性的一部分。通过杂交和选择可以实现相同的过程,但时间更长且精度更低。
为了提高未来的农业生产,需要重大技术进步来提高作物的产量和单产。通过成簇的规律间隔短重复序列/CRISPR 相关蛋白 (CRISPR/Cas) 系统靶向基因的编码区已经很成熟,并能够快速产生无转基因植物,从而改善作物。CRISPR/Cas 系统的出现还使科学家能够实现顺式调控元件 (CRE) 编辑,从而设计内源性关键 CRE 来调节靶基因的表达。最近的全基因组关联研究已经确定了天然 CRE 变体的驯化以调节复杂的农学数量性状,并允许通过 CRISPR/Cas 系统对其进行工程改造。虽然工程植物 CRE 有利于驱动基因表达,但其实际应用仍存在许多限制。在这里,我们回顾了 CRE 编辑的当前进展,并提出了未来有效靶向 CRE 进行转录调控以改良作物的策略。
演讲:详情 生物制剂节 (10 月 17 日),巴塞尔 演讲者:Aurore Morello 博士,OSE Immunotherapeutics 研究主管 “OSE- Cytomask 技术:用于靶向递送的顺式去掩蔽细胞因子技术” 10 月 17 日,11:30 蛋白质和抗体工程峰会 (PEGS) 欧洲峰会 (11 月 7 日),巴塞罗那 演讲者:Nicolas Poirier 博士,OSE Immunotherapeutics 首席执行官 “OSE-CYTOMASK:具有不可裂解接头的顺式去掩蔽细胞因子技术” 11 月 7 日,16:40 抗体治疗交流会 (11 月 18 日),布鲁塞尔 演讲者:Aurore Morello 博士,OSE Immunotherapeutics 研究主管 “应对最佳双特异性和免疫细胞因子工程所面临的挑战” 11 月 18 日,09:05 - 10:05 关于 OSE Immunotherapeutics OSE Immunotherapeutics 是一家生物技术公司,致力于开发免疫肿瘤学 (IO) 和免疫炎症 (I&I) 领域的一流资产。该公司目前均衡的一流临床管线包括:
DNA甲基化[5-甲基环胞嘧啶(5MC)]是脊椎动物胚胎创世纪所需的抑制性基因调节标记。基因组5MC通过DNA甲基转移酶的作用严格调节,DNA甲基转移酶沉积了5MC和十个时期的易位(TET)酶,该酶通过形成5-羟基甲基霉素(5HMC)而参与其主动去除。TET酶对于哺乳动物的胃胃和椎间发育增强剂的激活至关重要。但是,迄今为止,缺乏对5HMC功能,丰度和基因组分布的清晰图像。通过使用基础分辨率5MC和5HMC定量,在海胆和叶片胚胎发生过程中,我们阐明了非脊椎动物5HMC和TET酶的作用。我们发现,这些无脊椎动物氘代表使用TET酶来靶向与发育基因相关的调节区域的脱甲基化,并表明鉴定出5HMC调节的基因的补充是对脊椎动物的保守的。这项工作表明,从调节区域中删除5MC是氘代表胚胎发生的共同特征,暗示了对主要基因调节模块的意外深层保护。