1 路易斯安那州立大学生物科学系,路易斯安那州巴吞鲁日 70803,美国;msing21@lsu.edu (MS);gsriva2@lsu.edu (GS);xni2@lsu.edu (XN) 2 路易斯安那州立大学计算与技术中心,路易斯安那州巴吞鲁日 70803,美国;lpu1@lsu.edu (LP);eejaga@lsu.edu (JR) 3 路易斯安那州立大学兽医学院病理生物学系,路易斯安那州巴吞鲁日 70803,美国;bstanf5@lsu.edu (BAS);iuche@lsuhsc.edu (IKU);pjfrider@gmail.com (PJFR); vtgusk@lsu.edu (KGK) 4 路易斯安那州立大学兽医学院病理生物学系生物技术与分子医学系,美国路易斯安那州巴吞鲁日 70803 5 路易斯安那州立大学健康科学中心医学院,美国路易斯安那州新奥尔良 70112 6 路易斯安那州立大学电气与计算机工程系,美国路易斯安那州巴吞鲁日 70803 * 通信地址:michal@brylinski.org;电话:+225-578-2791;传真:+225-578-2597 † 这些作者对这项工作做出了同等贡献。
部长法令:2016 年 5 月 25 日 由 PABLO FRANCISCO RAMOS VARGAS 提交论文由 TIMA 实验室研究主任 Raoul VELAZCO 指导,格勒诺布尔阿尔卑斯大学讲师 Nacer-Eddine ZERGAINOH 联合指导,在 IT 技术实验室内编写和微电子学的集成系统架构电子、电工、自动、信号处理博士生学院 (EEATS) 对 SEE 敏感度的评估以及预测多核和众核处理器中实施的应用程序错误率的方法 2017 年 4 月 18 日公开答辩论文,在评审团组成:
在这个瞬息万变的时代,限制气候变化和实现可持续增长的迫切需要加强全球能源转型的势头。“氢经济时代”正在走进人类的视野,朝着建立更清洁的能源系统的方向发展[1]。在此背景下,燃料电池被视为最大限度发挥氢能潜在效率优势的首选技术[2]。质子交换膜燃料电池(PEMFC)目前是轻型车辆和物料搬运车辆的领先技术,在固定式和其他应用领域也占有较小份额[3]。然而,成本和耐久性两个主要挑战限制了其大规模商业化[4]。当前PEMFC系统耐久性和可靠性不理想可能导致高维护成本[5],而非优化运行可能是导致意外停机和部件进一步退化的关键原因[6]。人们做出了许多努力来提高其耐久性:改进材料、减少退化原因、改进结构设计、实施新的监督和管理设计等。预测和健康管理 (PHM) 是一门新兴学科,最初源自基于状态的维护 [ 7 ],已被用于监测和预测 PEMFC 系统的健康状况 [ 8 , 9 ]。人们已经研究了针对 PEMFC 的各种预测方法
越来越多的癫痫患者遭受着癫痫发作的痛苦,有效预测癫痫发作可以改善他们的生活质量。为了获得高灵敏度的癫痫发作预测,当前的研究通常需要复杂的特征提取操作,这严重依赖于人工经验(或领域知识)并且具有很强的主观性。为了解决这些问题,本文提出了一种基于长短期记忆网络(LSTM)的端到端癫痫发作预测方法。在新方法中,仅提取原始脑电图(EEG)信号的伽马波段作为网络输入直接进行癫痫发作预测,从而避免了主观和昂贵的特征设计过程。尽管方法简单,但在从脑电图信号中识别发作前期时,所提出的方法在波士顿-麻省理工学院儿童医院(CHB-MIT)头皮脑电图数据库上分别实现了 91.76% 的平均灵敏度和 0.29/h 的错误预测率(FPR)。此外,与仅考虑发作前和发作间期脑电图分类的传统方法不同,我们在所提出的方法中引入了发作后阶段作为额外类别。因此,癫痫发作预测的性能进一步提高,获得了更高的灵敏度 92.17% 和较低的 FPR 0.27/h。平均预警时间为 44.46 分钟,这表明该预测方法为患者采取干预措施预留了足够的时间。
摘要:剩余寿命预测对于电池的安全和维护具有重要意义,基于物理模型的剩余寿命预测方法适用性广、预测精度高,是下一代电池寿命预测方法的研究热点。本研究对电池寿命预测方法进行了比较分析,总结了基于物理模型的预测方法。预测方法根据其不同特点分为电化学模型、等效电路模型和经验模型。通过分析电化学过程简化的侧重点,将电化学模型分为P2D模型、SP模型和电化学融合模型。等效电路模型根据模型中电子元件的变化分为Rint模型、Thevenin模型、PNGV模型和RC模型。根据构建经验模型的数学表达形式不同,可分为指数模型、多项式模型、指数与多项式混合模型、容量衰减模型等,通过不同滤波方式的搭配,详细描述了各模型不同的效率,对比分析了各类预测方法的研究进展以及传统模型的变化与特点,并对电池寿命预测方法的未来发展进行了展望。
1,2和3 S V大学,Tirupati,Andhra Pradesh,印度摘要:随着新能源电动汽车的迅速发展,对电池的需求正在增加。 电池管理系统(BMS)在电池供电的储能系统中起着至关重要的作用。 锂离子电池是电动汽车的主要电源,其剩余使用寿命的预后对于确保电动汽车的安全性,稳定性和寿命长至关重要。 基于数据驱动方法的剩余使用寿命(RUL)预后已经成为研究的重点。 在电池健康管理领域至关重要的是,具有高精度,高概括和强大鲁棒性的机器学习方法的开发是必不可少的。 本文总结了使用机器学习算法对数据驱动方法的当前研究。 参数(例如电压,电流和温度值)作为数据集。 提出了一种幼稚的贝叶斯(NB)算法和梯度提升(GB)算法,以用于对电池进行RUL预测,并进行了模型的误差分析以优化电池的性能参数。 选择了MAE,MSE和RMSE等统计指标来数字评估预测结果。 实验后果表明,与其他机器学习技术相比,考虑到各种性能标准的其他机器学习技术可获得更好的结果。1,2和3 S V大学,Tirupati,Andhra Pradesh,印度摘要:随着新能源电动汽车的迅速发展,对电池的需求正在增加。电池管理系统(BMS)在电池供电的储能系统中起着至关重要的作用。锂离子电池是电动汽车的主要电源,其剩余使用寿命的预后对于确保电动汽车的安全性,稳定性和寿命长至关重要。基于数据驱动方法的剩余使用寿命(RUL)预后已经成为研究的重点。在电池健康管理领域至关重要的是,具有高精度,高概括和强大鲁棒性的机器学习方法的开发是必不可少的。本文总结了使用机器学习算法对数据驱动方法的当前研究。参数(例如电压,电流和温度值)作为数据集。提出了一种幼稚的贝叶斯(NB)算法和梯度提升(GB)算法,以用于对电池进行RUL预测,并进行了模型的误差分析以优化电池的性能参数。选择了MAE,MSE和RMSE等统计指标来数字评估预测结果。实验后果表明,与其他机器学习技术相比,考虑到各种性能标准的其他机器学习技术可获得更好的结果。
血脑屏障 (BBB) 在阻止有害的内源性和外源性物质进入大脑方面起着关键作用。小分子中枢神经系统药物的最佳大脑渗透性以较高的未结合脑/血浆比 (Kp,uu) 为特征。尽管据报道各种药物化学策略和计算机模型可改善 BBB 渗透性,但没有一种能够直接预测 Kp,uu。我们描述了一种基于物理的计算方法,即溶剂化自由能计算(溶剂化能或 E-sol),以预测 Kp,uu。该方法在内部中枢神经系统药物发现计划中的前瞻性应用凸显了这种新方法的实用性和准确性,该方法显示线性回归模型的分类准确率为 79%,R 2 为 0.61。
摘要:锂离子电池组中不可避免的热梯度由于热量产生和耗散不均,这会影响电池老化。在本文中,建立了用于模拟实用热梯度条件的实验平台。实验结果表明高非线性电池降解程度很高。考虑到高度非线性,高度非平稳性和随时间变化的数据的极限学习机器(ELM),它具有良好的学习能力和拟合能力。在本文中提出了基于麻雀搜索算法(SSA)的电池寿命预测模型,以优化ELM网络的随机权重和偏置,并通过实验数据进行验证。结果表明,与传统的ELM和后传播神经网络相比,SSA优化的ELM的预测结果具有较低的平均绝对误差百分比和均方根误差,这表明SSA-ELM模型具有较高的预测准确性,并且具有更好的稳定性,并且具有高非线性程度的处理数据方面具有明显的优势。
GBLUP 是应用最广泛的基因组预测 (GP) 方法,由于需要求基因组关系矩阵 (GRM) 的逆,因此随着训练群体规模的增加,该方法会消耗大量且不断增加的计算资源。因此,在本研究中,我们结合随机 Haseman - Elston (HE) 回归 (RHE-reg) 和预条件共轭梯度 (PCG),开发了一种新的基因组预测方法 (RHEPCG),该方法避免了直接求 GRM 的逆。模拟结果表明,在大多数情况下,RHEPCG 不仅能达到与 GBLUP 相似的预测精度,而且还能显著减少计算时间。对于实际数据,与 GBLUP 相比,RHEPCG 对拟南芥 F2 群体的 7 个性状和高粱双色 RIL 群体的 4 个性状表现出相似或更好的预测精度。这表明 RHEPCG 是 GBLUP 的一个实用替代方案,并且具有更好的计算效率。