基于先前工作中开发的热模型,并在参考文献中呈现。[4],已经确定,由于预热,可以将奥氏体阶段保留在激光处理过程中的整个存款步骤中。基于计算的材料点历史,在样品,LPF1和LPF2的制造中也实现了相同的结果。因此,在最后冷却阶段关闭激光器后,马氏体转化才发生。这样的转化产生了扩张菌株,可以促进沉积物内“拉伸”残留应力。但同时,冷却阶段本身会导致样品内收缩。现在考虑参考的工作。[5],取决于关键马氏体转化点(MS和MF)的位置,可能会出现“热”残留应力的暂时放松,这是由于所谓的超塑性效应在Martensite Transformation的时刻出现。在LFP2样品中获得的较高热量积累(见图7C)以及同一样品中较高的同质性水平可以被认为是该样品中获得的更好的超塑性效应的原因,从而避免了随后的冷裂裂纹现象,从而避免了更好的压力缓解。这些条件在CP和LFP1的两个样本中都无法存在,因此导致它们随后的冷裂。
摘要。这项研究通过微波辅助覆层和15%的粒子混合物在SS-304底物上提出了一种革命性的方法来增强表面增强。进行了细致的准备步骤,包括底物清洁和预热,以确保最佳的粘附和涂料质量。使用木炭作为振动者材料的微波混合动力加热,促进了粉末混合物的快速和均匀加热,而纯石墨板在此过程中阻止了污染。使用特定功率和频率设置的多模微波涂抹器进行了实验,从而导致最佳涂层形成的受控加热。通过SEM图像说明了微波辅助的覆层过程的精度,揭示了整个底物的覆层颗粒的均匀分布。此外,观察到表面硬度和耐磨性的显着改善,表面硬度增加了44.67%,低磨损速率为0.0020 mm3/m。这些发现突出了开发的覆层技术在增强SS-304底物的机械性能和耐磨性方面的有效性,为其在各种行业中的潜在应用铺平了道路,这些行业需要在滑动接触条件下可靠的表面保护和耐用性。
操作简单、可靠 — 16TJ 冷水机组的单个发生器提供一个溶液再浓缩阶段,这使 16TJ 冷水机组成为目前最基本的循环之一。16TJ 冷水机组的简单设计以及其他优质特性意味着其固有的高可靠性。运动部件少、操作简单、可靠,可减少停机时间以及服务和维护成本。卓越的效率 — 16TJ 冷水机组在标准 ARI(空调和制冷研究所)操作条件下提供 17.2 磅/小时-吨的满载蒸汽速率,在效率方面引领单效冷水机组市场。标准机器设计中结合了一个溶液热交换器,旨在通过预冷来自发生器的浓溶液来预热泵送至发生器的稀溴化锂溶液,以及第二个热交换器,通过回收蒸汽冷凝水中的额外热量来进一步预热稀溶液,从而进一步提高循环效率。卓越的部分负荷性能 — 16TJ 冷水机组的浓度控制系统允许在冷却水温度低至 64 F 时稳定地进行部分负荷运行,无需冷却塔旁路。机器中集成的控制阀可确保制冷剂泵在部分负荷条件下稳定、连续地运行。16TJ 冷水机组的连续运行范围为额定机器容量的 100% 至 10%。
操作简单、可靠 — 16TJ 冷水机组的单个发生器提供一个溶液再浓缩阶段,这使 16TJ 冷水机组成为目前最基本的循环之一。16TJ 冷水机组的简单设计以及其他优质特性意味着其固有的高可靠性。运动部件少、操作简单、可靠,可减少停机时间以及服务和维护成本。卓越的效率 — 16TJ 冷水机组在标准 ARI(空调和制冷研究所)操作条件下提供 17.2 磅/小时-吨的满载蒸汽速率,在效率方面引领单效冷水机组市场。标准机器设计中结合了一个溶液热交换器,旨在通过预冷来自发生器的浓溶液来预热泵送至发生器的稀溴化锂溶液,以及第二个热交换器,通过回收蒸汽冷凝水中的额外热量来进一步预热稀溶液,从而进一步提高循环效率。卓越的部分负荷性能 — 16TJ 冷水机组的浓度控制系统允许在冷却水温度低至 64 F 时稳定地进行部分负荷运行,无需冷却塔旁路。机器中集成的控制阀可确保制冷剂泵在部分负荷条件下稳定、连续地运行。16TJ 冷水机组的连续运行范围为额定机器容量的 100% 至 10%。
摘要:作为世界上最大的棕榈油生产商之一,印度尼西亚具有利用棕榈油厂废水(POME)的巨大潜力,以生产氢作为有希望的能源。这项研究研究了热预处理对从水解到水解 - 累积发生的生物氢产生效率的影响。在与牛粪结合之前,在各种温度(50、75、100、125和150°C)的各种温度(50、75、100、125和150°C)上进行了预处理。将组合在35°C的生物反应器中发酵48小时。每四个小时,使用GC-TCD监测氢气的产生,并在反应前后对底物的化学氧需求(COD)进行研究,以确定预处理的效率。研究发现,将材料预热至100°C可产生最佳效果,氢含量为36.5%,COD去除效率为22.74%。最高的氢产率为每升氢氢的0.264升,这是理论最大值的8.79%。当温度超过100°C时,由于形成了顽固的物质,氢产生降低。这些发现强调,正确的热预处理可以极大地增强POME的生物氢产生,从而提供一种可持续的方法来管理废物并产生替代能源。
操作简单、可靠 — 16TJ 冷水机组的单个发生器提供一个溶液再浓缩阶段,这使 16TJ 冷水机组成为目前最基本的循环之一。16TJ 冷水机组的简单设计以及其他优质特性意味着其固有的高可靠性。运动部件少、操作简单、可靠,可减少停机时间以及服务和维护成本。卓越的效率 — 16TJ 冷水机组在标准 ARI(空调和制冷研究所)操作条件下提供 17.2 磅/小时-吨的满载蒸汽速率,在效率方面引领单效冷水机组市场。标准机器设计中结合了一个溶液热交换器,旨在通过预冷来自发生器的浓溶液来预热泵送至发生器的稀溴化锂溶液,以及第二个热交换器,通过回收蒸汽冷凝水中的额外热量来进一步预热稀溶液,从而进一步提高循环效率。卓越的部分负荷性能 — 16TJ 冷水机组的浓度控制系统允许在冷却水温度低至 64 F 时稳定地进行部分负荷运行,无需冷却塔旁路。机器中集成的控制阀可确保制冷剂泵在部分负荷条件下稳定、连续地运行。16TJ 冷水机组的连续运行范围为额定机器容量的 100% 至 10%。
钢 (SS) 与 AISI 400 系列马氏体不锈钢 (参考文献 10、11) 相似,但它仍然非常出色,并且可以采用任何常见的电弧、电阻或高能量密度焊接工艺进行焊接。无需预热 (参考文献 12-I 6) 或 PWHT 来防止开裂或恢复延展性 (参考文献 10、1 [ ])。在这种材料中,由于微观结构中存在残余奥氏体 (参考文献 12),紧邻熔合区的热影响区 (HAZ) 可以通过焊接加热和冷却循环 (参考文献 12、15、17) 有效地退火或软化。因此,这种材料可以在时效条件下焊接而不会产生裂纹(参考文献 11、15),因为焊接热量会导致 HAZ 局部软化(参考文献 12)。此外,在固溶处理 (ST) 条件下焊接不会导致固溶处理结构出现明显的沉淀硬化,因为焊接期间的加热时间太短(参考文献 12、14、15)。对于焊接 17-4 PH SS,通常首选匹配成分或低强度高延展性不锈钢的填充金属和电极(参考文献 1、11、15、16)。用匹配填充金属制成的焊件可以时效到与母材相当的强度水平,并用于生产高强度焊件。但是,如果允许较低的强度水平,则可以使用奥氏体不锈钢焊接金属。
在吸附柱中部加入50~200μLElution Buffer或无菌水,室温放置2~5分钟,12000rpm离心1分钟。收集 DNA 溶液并将 DNA 储存于 -20°C。注:1)若后续实验对pH或EDTA敏感,可用无菌水洗脱。洗脱液的pH值对洗脱效率有很大影响。若用水作为洗脱液,则pH应为7.0~8.5(可用NaOH调节水的pH值至此范围),pH值低于7.0洗脱效率不会高。 2) 将洗脱缓冲液放入65-70°C水浴中预热。离心前在室温下孵育 5 分钟以提高产量;用另外50-200 μL洗脱缓冲液或无菌水洗脱可能会增加产量。 3) 如果想提高DNA最终浓度,可以将所得溶液加入到吸附柱中,室温下放置2-5分钟,12000 rpm 离心1分钟;如果洗脱体积少于200 μL,可能会增加最终的DNA浓度,但可能会降低总产量。如果DNA量少于1μg,建议用50μL洗脱缓冲液或无菌水洗脱。 4) 由于保存在水中的DNA会受到酸性水解的影响,如果需要长期保存,建议用Elution Buffer洗脱后保存于-20℃。
摘要 物联网渗透到生活和工作的各个领域,使物理对象具有数字技术的特征。此外,在能源领域,光伏系统、电池存储系统和恒温器等物理产品都配备了智能和连接组件,成为智能能源产品。智能能源产品使新型服务成为可能,这些服务就是智能能源服务。例如,智能恒温器可以根据收集和分析的数据提供智能预热服务。在此背景下,智能能源服务为公司提供了新的商业潜力,也为私人家庭带来了附加值。为了从这一发展中获益,公司需要了解产品和基于这些产品构建的服务的特性和功能。智能能源服务尤其看起来很有前景,因为服务被视为通往客户的桥梁。然而,支持智能能源服务设计的研究很少。为了弥补这一差距,本文从多个维度对智能能源服务进行了形态分析。在强调智能能源服务的独特特征的同时,本文对智能能源服务的性质及其在新的消费者和商业价值方面的潜力进行了更细致的描绘。此外,以消费者为导向的智能能源服务现象将进一步概念化,形态框可被视为智能能源服务设计的结构化方法。
全球许多地区的淡水稀缺性在增加;为了满足这一需求,海水脱盐是最好的选择,由于城市化和工业化,电能消耗正在升级。可以通过与梯级太阳能静止(SSS)集成的光伏电压(PVT)模块来满足电力和淡水的可持续生产。本研究重点介绍了PVT-SSS海水淡化系统的理论建模,用于评估热效率,能源效率,淡水生产力和电力发电。太阳能静止的生产率将受到水的深度,隔热厚度,玻璃盖材料,厚度和倾斜度的影响,以及预热输入水供应和盐分等操作因素。对泰米尔纳德邦(Tamil Nadu)的Vellore Town(12.9165°N,79.1325°E)进行了比较分析(12.9165°N,79.1325°E)。在当前工作中,为PVT-SSS系统开发了基于质量和能量平衡的热力学模型,并通过数值方法解决。使用Python程序来解决热力学仿真模型,采用了第四阶的runge-kutta技术。该模型的结果描述了,在夏季,冬季和多雨的气候季节中,PV/T-SSS的淡水生产率确定为12.18 kg/m 2天,6.67 kg/m 2天和2.77 kg/m 2天。此外,还发现夏季,冬季和雨季的电效率分别为8.91%,9.135%和9.53%。分别观察到2 cm和5 cm的最大和最小淡水产生1668 kg/m 2和1218 kg/m 2。