引言纳米技术代表了一个快速增长的领域,在催化,太阳能,废物管理和传感技术中采用了不同的应用。在医疗领域,纳米材料用于药物输送,疾病诊断,心血管疾病的治疗,伤口愈合和抗菌剂的发育。纳米颗粒,尤其是使用贵金属合成的纳米颗粒,表现出在单个分子或散装金属中未发现的独特物理化学特性。Silver nanoparticles, in particular, are widely used due to their versatile applications.然而,纳米颗粒合成的常规方法是昂贵且对环境毒性的,因此需要探索替代性,环保合成方法。使用植物材料对银纳米颗粒的绿色合成提供了一种具有成本效益,快速和环境良性的方法。富含植物成分的植物提取物是银离子的还原剂,促进纳米颗粒合成。诸如温度,pH,植物提取物浓度和硝酸银浓度等因素会影响合成过程。Premna Integiria L.长期以来一直在传统医学中用于其抗菌和抗氧化特性。这项研究旨在使用综合假单胞菌的水叶提取物合成银纳米颗粒,并评估其物理化学特征和生物学活性。
摘要:TIO 2用TIO 2骨料装饰的Tio 2纳米捆绑包在各种温度(170、190、210和230℃)下使用简单且可扩展的热液方法制备。揭示了合成温度是调整纳米表面骨料数量的关键参数。准备好的TIO 2聚集体和纳米束包用于设计阳极材料,其中聚集体调节了相互连接的纳米束结构的孔径和连通性。采用了一种电静态技术来用于TIO 2样品的电化学表征。由于在锂离子电池(LIBS)循环过程中使用TiO 2作为模型材料,讨论了阳极材料的形态与LIBS在循环中的容量保持能力之间的关系。清楚地发现,孔和特定表面积的大小和连通性对电池的LI插入行为,锂储存能力和循环性能产生了惊人的影响。最初的不可逆能力随着特定表面积的增加而增加。随着孔径的增加,介孔释放酶释放菌株的能力更强,从而带来更好的循环稳定性。在230℃的温度下制备的TiO 2粉末显示出最高的排放能力和电荷能力(203.3 mAh/g和140.8 mAh/g)和良好的循环稳定性。
2 泰国那空帕侬大学教育学院科学系,48000 电子邮件:a Suriya.p@npu.ac.th,b,* p_thanatep@yahoo.com,c,* chaiwelding@ms.npu.ac.th(通讯作者)摘要。由于对具有优异机械性能的材料的需求不断增加,特别是在航空航天和汽车行业,高性能铝基复合材料 (AMC) 的开发至关重要。本研究通过摩擦搅拌处理 (FSP) 用微 TiO 2 颗粒增强 AA6061-T6 铝合金,解决了提高其硬度和冲击能量的需求。主要目标是优化 FSP 参数以改善这些机械性能。采用灰色-田口方法进行多响应优化,重点关注工具转速、横移速度和 TiO 2 颗粒体积。该方法利用田口正交阵列 (OA) 来最小化实验运行,同时仍捕获全面的数据。应用灰色关联分析 (GRA) 来处理多个相关响应,将它们转换为统一的指标,即灰色关联等级 (GRG)。结果确定最佳 FSP 参数为工具速度为 1100 rpm、横移速度为 20 mm/min 和 TiO 2 颗粒体积为 450 mm³,这显著提高了机械性能。比较分析表明,最佳参数将硬度和冲击能量都提高了 15.80 J,GRG 值为 0.905,表明预测结果与实验结果之间存在很强的相关性。确认实验验证了这些结果,GRG 增加了 0.099,表明工艺参数的组合非常有效。研究结果强调了 TiO 2 颗粒体积对复合材料机械性能的显著影响。这些结果为生产先进的 AMC 提供了关键见解,为实现工业应用的高性能材料提供了途径。关键词:铝基复合材料、FSP、Grey-Taguchi 多响应。
植物学和微生物学系,科学学院,Sohag University,Sohag,82524,埃及。*电子邮件:gem_gad@yahoo.com收到:2024年11月16日,修订:2024年12月2日,接受,接受:2025年12月19日在线发布:2025年2月7日,2025年2月7日摘要:曲线摘要(sumcc 22003)(sumcc 22003)是一种与药物的内生真菌相比,是一种与药物的叶子相比,该植物植物caltroproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproprop- h.--埃及。根据形态和系统发育分析确定了真菌。研究了C. spicifera对生物合成银纳米颗粒(AGNP)的能力。使用UV-VIS光谱,XRD测量,DLS,ZETA电位分析,FTIR和HR-TEM分析来表征生物合成的AGNP。形成的AGNP稳定,分散且球形晶体,平均直径为38.41 nm,ZETA电位为-6.35 mV。FTIR分析证实AGNP用蛋白质封盖。生物合成优化研究表明,1 mM Agno3,5 g生物量重量,pH 10.5和60°C的反应温度是AGNPS生物合成的最佳条件。agnps在不同浓度上对革兰氏阴性细菌,革兰氏阳性细菌和酵母菌的测试物种发挥了显着的抗菌活性,表明它们作为广谱抗菌剂的潜力。大肠杆菌对AGNP(50 µg)的敏感性最高,抑制区直径为23.7±0.3 mm,MIC 4.2±0.1 µg。agnps(50 µg)的抑制区为16.7±0.1 mm,MIC对于白色念珠菌的抑制区为5.7±0.3。关键词:钙髓质Procera,细胞外生物合成,表征,优化,抗菌活性
Philippe E Mangeot,Laura Guiguettaz,Thibault J M Sohier,Emiliano P Ricci。通过病毒样颗粒(“纳米薄片”)在永生和原代细胞中递送Cas9/sgrna核糖核蛋白复合物。可视化实验杂志:Jove,2021,169,10.3791/62245。hal-04892096
* 通讯作者:moises.garin@uvic.cat 我们报告了一种通过在纳米颗粒/基底界面的弯月面中毛细管冷凝在纳米尺度上局部输送气相化学蚀刻剂的方法。该过程简单、可扩展且不需要对纳米颗粒进行功能化。此外,它不依赖于材料的任何特定化学性质,除了溶液是水性的和所涉及表面的润湿性之外,这应该使其能够应用于其他材料和化学品组合。具体而言,在这项工作中,我们通过使用暴露于 HF 蒸汽的自组装单层聚苯乙烯颗粒定期对 SiO 2 层进行图案化来演示所提出的工艺。然后使用图案化的 SiO 2 层作为掩模来蚀刻 Si 中的倒置纳米金字塔图案。已经证明了硅纳米图案化适用于从 800 nm 到 100 nm 的颗粒尺寸,对于 100 nm 纳米颗粒,实现了尺寸小至 50 nm 的金字塔。
目的:应用于癌症治疗的纳米技术是纳米医学研究的一个越来越多的研究领域,具有磁性纳米粒子介导的抗癌药物输送系统,提供了最小可能的副作用。到此,使用无标记的共聚焦拉曼光谱研究了商业钴金属纳米颗粒的结构和化学性质。材料和方法:通过XRD和TEM研究了钴纳米颗粒的晶体结构和形态。用鱿鱼和PPM研究了磁性特性。共聚焦拉曼显微镜具有高空间分辨率和组成灵敏度。它是一种无标记的工具,可在细胞内追踪纳米颗粒,并研究无涂层的钴金属纳米颗粒与癌细胞之间的相互作用。通过MTT测定法评估了钴纳米颗粒对人类细胞的毒性。结果:MCF7和HCT116癌细胞和DPSC间充质干细胞的超paragnetic CO金属纳米颗粒摄取通过共聚焦拉曼显微镜研究。拉曼纳米颗粒特征还可以准确检测细胞内的纳米颗粒而无需标记。观察到钴纳米颗粒的快速吸收,然后观察到快速凋亡。通过针对人类胚胎肾脏(HEK)细胞的MTT测定法评估其低细胞毒性,使它们成为有望发展目标疗法的候选者。结论:无标签的共聚焦拉曼光谱可以准确地将CO金属纳米颗粒定位在细胞环境中。此外,在20MW的激光照射下,波长为532nm,可以使局部加热导致细胞内钴金属纳米颗粒的燃烧,从而为癌症光疗法开放新的途径。研究了无表面活性剂钴金属纳米颗粒与癌细胞之间的相互作用。癌细胞中易于的内吞作用表明,这些纳米颗粒在产生其凋亡方面具有潜力。这项初步研究证明了钴纳米材料在纳米医学中应用的可行性和相关性,例如光疗,高温或干细胞递送。关键字:拉曼光谱,钴纳米颗粒,癌细胞,干细胞,细胞摄取,凋亡,无标签工具
(图中的虚线4b)。适合背景提取的PDF(图4B)返回非常相似的晶格参数,液体和气相减少后的NP尺寸为2.3±0.1 nm(表S1)。这提供了令人信服的证据,表明在70°C的环己烷中,PTAL中的Pt氧化物相完全降低,并且反应环境不影响PT粒径,PT粒径仍然非常接近由茎在原始(未修复)PTAL催化剂上评估的分布中心(图。1)。也适用于PTAL(R)(图S7),尽管平均NP大小远大于降低的PTAL(表S1)。还原催化剂的PDF模式(图4b),其中短期顺序在很大程度上由散装FCC PT决定
深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。