摘要:随着低碳经济的不断发展,利用可再生能源替代化石能源的能源结构调整已成为必然趋势。为提高可再生能源在电力系统中的比例,提高可再生能源制氢发电系统的经济性,本文基于电化学储能和氢储能技术,建立了风光互补氢储能系统运行优化模型,采用自适应模拟退火粒子群算法进行求解,并与标准粒子群算法进行了比较。结果表明,改进算法求解的日前运行方案全天可节省系统运行成本约28%。算例分析结果表明,建立的模型充分考虑了系统中设备的实际运行特点,在分时电价机制下,通过调节从电网购入的电量和蓄电池的充放电功率,可以减少风能和太阳能的浪费。系统日前调度优化在保证制氢功率满足氢气需求的同时,实现了日系统运行成本最小化。
摘要:近二十年来,在“绿色复苏”全球目标的推动下,水电、风电、太阳能等清洁能源取得了长足发展,可能成为各国实现低碳能源体系的重要手段。本文对典型水风光互补实践项目——可再生能源发电的发展情况进行综述,并分析了互补系统中大型电站发电规律描述与预测、风险管理、协调运行等一些关键问题。针对这些问题,本文系统总结了水风光互补系统的研究方法与特点,并从风电电站集群出力的预测与描述、大规模可再生能源并网运行带来的风险、集群模式下水风光互补系统的长期与短期协调建模及解决思路等方面阐述了其技术实现过程。最后,基于上述分析,从发电预测、风险管理、集群调度等角度探讨了目前研究的不足,并展望了未来的工作方向。水电、风电、太阳能等能源互补的混合系统正逐渐兴起,成为未来富有成果的研究领域。
摘要 .本文探讨了基于“绿色”能源利用的高层建筑节能技术方案,包括:采用风光互补发电装置和垂直轴涡旋风力发电装置,既利用高空水平风流的能量,又利用上升气流的能量。在分析现有技术的基础上,提出了建设风光互补发电装置节约高层建筑能源的一般原则,包括:为保证安全运行和无远程干扰,建议采用具有捕捉风流的空腔的穹顶设计来封闭风力涡轮机;为保证环境友好和便于管理,建议采用模块化设计的各种垂直涡旋风力涡轮机;为高效利用太阳能,建议将光伏电池集成到穹顶的外部结构中;为降低工程造价,建议利用现有的高层建筑。提出一种涡流风力发电装置,可以利用小风和低位热流,减少低频振动,提高风能利用的稳定性和效率,并且易于安装、维护和修理。
摘要:微电网经济功率优化调度是新型电力系统优化的重要组成部分,对降低能源消耗和环境污染具有重要意义,微电网不仅要满足基本供电需求,还要提高经济效益。本文考虑发电成本、放电成本、购电成本、售电收入、电池充放电功率约束、充放电时间约束,提出了多场景下风光储微电网联合优化模型,并给出了相应的基于粒子群优化的模型求解算法。此外,以白洋淀地区王家寨项目为例,验证了所提模型和算法的有效性。对多场景下的风光储微电网联合优化模型进行了探讨和研究,并给出了多场景下的最优经济功率调度方案。我们的研究表明:(1)蓄电池可以起到削峰填谷的作用,可以使微电网更具经济性;(2)当购电价低于可再生能源发电成本时,如果允许风电、光伏弃风,微电网将产生更高的经济效益;(3)限制微电网与主网之间的交换功率,会对微电网的经济性产生负面影响。
摘要:配置储能装置可有效提高风电、光伏等新能源的就地消纳率,缓解外部电网规划建设对新能源并网运行的压力,为此提出一种源荷协同参与的储能容量双层优化配置方法。外部模型引入需求侧响应策略,根据负荷及新能源出力分布特性确定分时电价的峰、平、谷时段,进一步以风光储系统收益最大化为目标。以峰、平、谷电价为决策变量,建立外部优化模型,以优化电价为基础调整各时段用户用电情况,将结果传递至内部优化模型。内部模型以风光储系统中配置功率和储能容量为决策变量,建立综合考虑新能源就地消纳率和储能配置成本的多目标函数,将内层的优化结果反馈给外层优化模型。采用ISSA-MOPSO算法对优化后的配置模型进行求解。最后通过数值算例验证了所提模型及算法在新能源就地消纳率和经济性方面的合理性。
摘要:随着大量可再生能源被引入电力系统,每日运行调度 (DOS) 面临新的挑战。除了运行之外,这些能源的功率变化也导致每小时定价出现问题,这里用位置边际定价 (LMP) 来表示。因此,能源转移等新应用为系统提供了更高的效率,最大限度地减少了风电削减 (WPC) 造成的负面影响。本文展示了水火风光伏发电系统 DOS 中的 LMP 形成,该系统配有电池储能系统和 WPC 的减少。在这里,风力发电厂和光伏发电厂的设计是可调度的,而不是强制性的,以便能够削减发电量,并考虑了分布式发电的插入。此外,为了解决 DOS 问题,使用了内点法。此外,还使用迭代方法对用于表示 DOS 以及电网表示的直流最优功率流进行建模。分析是在 IEEE 24 节点系统中进行的,数据来自巴西。最后,展示并讨论了模拟结果,证明了优化在降低 WPC、总运行成本和提供 LMP 曲线方面的有效性。
摘要:在高比例可再生能源并网系统中,传统的虚拟同步发电机(VSG)控制面临诸多挑战,特别是在电网电压跌落时难以保持同步,这可能导致电流过载和设备断线,影响系统的安全性和可靠性,同时限制系统的动态无功支撑能力。针对这一问题,本研究设计了一种直流侧接入电池储能装置的风光互补发电系统,并提出了一种基于改进型VSG的并网逆变器低电压穿越(LVRT)控制策略。该控制策略采用虚拟阻抗与矢量限流相结合的综合限流技术,通过调节无功功率设定值来保证VSG在对称故障期间表现出良好的动态功率支撑特性,同时保持VSG自身的同步和功角稳定性,实现LVRT的目标。仿真结果表明,提出的控制策略能够有效抑制可再生能源出力波动(与传统策略相比波动幅度降低约30%),保证电网侧故障时可再生能源和VSG安全可靠运行,同时提供给定无功功率支撑和稳定的电网电压控制(电压跌落降低约20%),显著提升风光储混合发电系统的低电压穿越能力。
“(5) 独立能源存储系统 (ESS) 的偏差费用应与本条例第 (1) 条规定的 RoR 发电站、基于城市固体废物的发电站或 WS 卖方以外的一般卖方的偏差费用相同” “(6) 与在同一互连点连接的 WS 卖方位于同一地点的 ESS 的偏差费用应如下所述:i) 此类卖方应通过互连点的牵头发电机或 QCA 为 WS 和 ESS 组件提供单独的时间表;ii) 根据本条例第 (4) 条,与 WS 组件相对应的偏差应按照适用于基于太阳能或风光混合资源的发电站的 WS 卖方的相同费率收取;以及 iii) 根据本条例第 (5) 条,与 ESS 组件相对应的偏差应按照适用于独立 ESS 的相同费率收取。”
摘要:能源供应问题已成为重要的社会问题,因此,结合可再生能源提高微电网系统的稳定性,提出一种光伏混合电网控制系统。基于直驱风力发电系统和光伏发电系统的运行原理,提出了一种风光混合微电网的直流电压源控制策略,并通过实验验证了其有效性。在混合微电网在风速突变时的动态响应中,t=6s后风速发生变化,光伏发电系统的有功功率从6200W降至5500W。然后,分析了微电网系统的重要参与因素,并随着特征值运动轨迹的变化,将光伏发电系统的直流电压参数优化至2e-3,验证了所提控制系统的有效性和实用性。