■ 如果没有顾虑,参与过程将以德国联邦国防军的积极声明结束。 ■ 另外,德国联邦国防军也愿意进行专业讨论,以讨论实施观点(例如,通过调整位置或降低建筑高度)。
使命:气候计划领域是传感和监测碳捕获、封存水系统研究计划的所在地。这些计划将应对以下重要挑战:为全球气候条约奠定基础通过可靠的碳管理策略关闭碳循环确保水安全、保障和可持续性
注意:本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府、其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府、其任何机构或其任何承包商或分包商对其的认可、推荐或支持。本文表达的观点和意见不一定表明或反映美国政府、其任何机构或其任何承包商的观点和意见。
1。经济 - 本地:具有经济竞标的发电机的市场派遣,以减轻当地交通拥堵。2。经济 - 系统:具有经济竞标的发电机的市场派遣,以减轻系统供应量。3。自我施加 - 本地:自我安排的市场派遣以减轻当地交通拥堵。4。自我施加 - 系统:自我安排的市场派遣以减轻系统范围的过度供应。5。exdispatch-本地:杰出派遣来减轻当地拥塞。6。exdispatch-系统:出色的派遣来减轻系统范围的过度供应。
1。经济 - 本地:具有经济竞标的发电机的市场派遣,以减轻当地交通拥堵。2。经济 - 系统:具有经济竞标的发电机的市场派遣,以减轻系统供应量。3。自我施加 - 本地:自我安排的市场派遣以减轻当地交通拥堵。4。自我施加 - 系统:自我安排的市场派遣以减轻系统范围的过度供应。5。exdispatch-本地:杰出派遣来减轻当地拥塞。6。exdispatch-系统:出色的派遣来减轻系统范围的过度供应。
该地区的军事资产。任何可能对军事行动和战备产生不利影响的发现都会在法律上引发与基地和项目开发商就潜在缓解方案的讨论。私人开发商已签署缓解协议以解决国防部的担忧。在某些情况下,开发商对其拟议项目进行了更改,包括限制涡轮机数量或更改其高度和拟议位置;部署夜视兼容照明;或同意在某些条件下停止(“削减”)涡轮机。在其他情况下,开发商同意支付现有雷达的升级费用或购买新雷达以提高国防部的能力。如果国防部、当地基地和项目开发商无法找到或同意缓解方案,国防部将反对拟议项目。现实情况是,国防部可能担心的风电场要么没有建造,要么已经以某种方式得到缓解。基地没有因为附近的风电场而失去任何任务。本报告的第一部分总结了现有的国防部审查流程以及特朗普总统签署成为法律的 FY18 NDAA 中对该流程的最新改进。它还强调了实施任意禁区的提案的缺陷,这些提案将凌驾于特定项目和特定基地的分析之上;并总结了扩大可用于解决潜在影响的缓解措施的努力。
风力涡轮机 (WT) 利用风能发电。因此,对风力涡轮机的控制和经济高效的运行进行了研究。控制系统具有使用寿命长、能量输出最大和安全性高等特点。在控制方法和控制策略方面,讨论了限制和优化能耗的各种方法。风力发电的整合可能会损害瞬态系统的稳定性。异步感应发电机无法处理风能应用中产生的无功功率。WT 通常设计为可承受恶劣天气,但不能承受高速度或高扭矩。强大的气动扭矩或转速能够破坏 WT 叶片。为了防止这种情况发生,WT 始终具有一个切断速度,超过此速度时,涡轮机将通过制动器停止运转。当过大的风速危及涡轮机的安全时,WT 会采用一系列控制技术。因此,所有 WT 均采用功率控制方法构造。这可以调节俯仰和失速。WT 可以应用被动或主动失速控制。因此,本研究分析了相关技术、风力涡轮机的维护、成本、多种类型的风力涡轮机控制器以及风能行业特有的负面影响和障碍。
摘要:本论文介绍了风力涡轮机叶片材料(E 玻璃和聚酯树脂)子结构测试的开发,以及从该测试程序中获得的初步实验结果。密歇根州立大学正在进行的研究已经建立了转子叶片材料疲劳响应的基线数据,使用试样几何形状对 10^8 个应力循环进行测试。子结构测试的必要性基于公认的工程程序,即逐步扩大规模以进行全尺寸测试。对于复合材料风力涡轮机叶片,这种方法的必要性源于缺乏针对风力涡轮机预期寿命的动态结构设计经验,在 30 年的使用寿命中接近 10^9 个疲劳循环,并且缺乏在这种循环水平上使用 E 玻璃复合材料的经验。
德国劳氏船级社指南允许以两种完全不同的方式计算载荷谱。在所谓的“简化载荷谱”的情况下,载荷分量的最大波动幅度为额定风况下该分量纯气动载荷平均值的±75%,以及与质量相关的载荷的叠加。GL 指南中允许的第二种方法是根据时间域中的模拟结果计算载荷谱。对于多个平均风速,计算载荷分量的时间相关特性时要考虑风的自然空间湍流。使用雨流法将它们转换为载荷谱。在参数研究中,根据这两种方法计算载荷谱并进行比较。计算适用于额定功率为 100 kW 至 2000 kW、具有两个和三个叶片的涡轮机,以及失速控制和俯仰控制涡轮机。通过 1 P 疲劳等效载荷谱将计算出的载荷谱与每个载荷谱进行比较。介绍了各个参数的影响,以及简化载荷谱的有效性。
下一代先进涡轮机控制系统研发——Alan D. Wright,国家可再生能源实验室 通过先进的控制策略提高能量产量、减轻负荷和稳定风力涡轮机系统,降低海上张力腿平台 (TLP) 风力涡轮机系统的能源成本——Albert Fisas,阿尔斯通电力公司 叶片设计工具和系统分析——Jonathan Berg,桑迪亚国家实验室 WE 5.1.2 海上风电研发与技术:创新概念——D. Todd Griffith,桑迪亚国家实验室 计算机辅助工程 (CAE) 工具——Jason Jonkman,国家可再生能源实验室 浮动平台动态模型——Jason Jonkman,国家可再生能源实验室 开发公共领域的系泊锚程序以与 FAST 耦合——Joseph M.H. Kim,德克萨斯 A&M 大学 海上风电结构建模与分析 —Jason Jonkman,国家可再生能源实验室 创建用于通用模拟代码的底部固定风力涡轮机与表面冰相互作用的模型 —Tim McCoy,DNV KEMA Renewables,Inc. 底部固定平台动力学模型评估五大湖过渡深度结构的表面冰相互作用 —Dale G. Karr,密歇根大学 五大湖浅水海上风电优化 —Stanley M. White,海洋与海岸顾问公司 改进海上风能系统设计基础的先进技术 —Ralph L. Nichols,萨凡纳河国家实验室 优化的系统设计
