本文提出了一种用于先进布局飞机大迎角风洞试验气动参数标定的智能算法,该算法基于同源比对与调优算法,可以有效提高风洞试验模型的精度。首先,在分析某先进布局缩比飞机大振荡风洞试验数据的基础上,建立了由静导数、动导数、旋转平衡导数组成的大迎角风洞试验模型。其次,为有效提高风洞试验模型的精度,提出了分层标定与智能算法相结合的大迎角同源比对修正思路。所提方法解决了先进布局飞机大迎角气动模型同源比对中结构复杂、数据量大、精度差的问题。最后基于MATLAB GUI设计了相应的比对界面软件,将提出的方法与思路融入其中,实现了先进布局飞机大迎角模拟飞行风洞试验气动参数的有效调整,为后续先进布局飞机大迎角飞行试验验证提供了可靠的工程技术手段。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是在考虑这三个要素之间的权衡的情况下最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于使模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和实际在赛道上行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用 CFD 再现轮胎因侧向力而变形时的气流,而这在风洞中无法用实际车辆再现,这为在赛道上行驶的车辆周围的气流带来了新的发现。其中一些发现已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
摘要:本研究旨在建立常规风洞试验中路基上空边界层与列车模型气动载荷之间的相关性。首先,通过PIV实验测试方法研究了不同前缘角(15°、30°、45°)下路基周围的流动特性。然后,开展了高速列车气动性能风洞试验。将结果与以前的动模型试验数据进行了比较。结果表明,由于边界层的存在,作用在列车头部下部的压力减小,而其他位置的影响不明显。这是列车气动阻力和升力减小的原因。此外,随着边界层厚度的增加,减小效果更加明显。所获得的实验结果可作为高速列车风洞试验的气动力校准。
Icas.org › ICAS1980 › ICAS-80-23.2.pdf PDF 作者:K Wilhelm — 作者:K Wilhelm 风洞试验,各种信息... 先进控制概念的测试需要其他方法来获取... (1) 产生以下一组。 15 页
I. 简介 HIS 论文是北大西洋公约组织 (NATO) 牵头的研究系列论文之一,该系列论文探索了计算流体力学 (CFD) 方法在稳定性和控制分析方面的能力。本文介绍了一种通用无人作战飞机 (UCAV) 配置的动态风洞试验。在后续出版物中,我们将把 CFD 预测与这些实验测量结果进行比较。北约科学技术组织 (STO) 应用车辆技术 (AVT) 任务组 201 以前身任务组 AVT-161 1-9 的研究工作为基础。AVT-201 的另一个重点是预测偏转控制面效应。本文介绍了从一系列具有多个后缘控制面的通用 UCAV 配置的风洞试验中获得的受迫振荡实验数据。我们还收集了一组补充静态数据,并在参考文献 10 中报告。