摘要 飞机表面可能发生气动弹性不稳定性,导致疲劳或结构故障。颤振是一种气动弹性不稳定性,会导致结构自激发散振荡行为。经典的二自由度颤振是弯曲和扭转振动模式的组合。已经开发了一种柔性支架系统,用于风洞中刚性机翼的颤振试验。这种柔性支架必须提供一个明确定义的二自由度系统,刚性机翼在该系统上遇到颤振。在进行任何风洞颤振试验之前,进行了实验模态分析 (EMA) 和有限元模型分析 (FEM),以验证固有频率和模式。使用拉格朗日方程开发了系统的运动方程。通过三种不同的方法确定临界颤振速度:稳定流的 p 方法、经典颤振分析和非稳定流的 k 方法,并与实验结果进行了比较。关键词:气动弹性、颤振、柔性结构、风洞试验、实验模态分析、有限元模型分析。1. 简介气动弹性是指研究气流中弹性结构变形与由此产生的气动力之间相互作用的研究领域。气动弹性研究主要有两个领域。首先,静态气动弹性涉及弹性力和气动力之间的相互作用,忽略
摘要 。覆冰输电线路荷载以及导线被冰覆盖后舞动产生的荷载,都可能造成线路跳闸、导线断线、铠装线夹损坏,甚至倒塔等严重故障,严重威胁电力系统运行安全。输电线路舞动的产生、发展过程十分复杂,影响舞动激励的因素很多,如环境因素、地形因素、输电线路结构参数等,其中导线覆冰是引起舞动的必要因素之一。因此,在大型多功能人工气候室开展了不同类型导线在不同气象条件下覆冰量增加试验研究,得到了不同条件下导线覆冰量随时间增加的关系曲线,并分析了影响覆冰量增加的因素。研究结果表明:在相同覆冰条件下,小直径导线覆冰增长较快;环境温度和风速对导线覆冰增长有明显影响,且环境温度将决定导线表面覆冰类型。同时,针对不同覆冰形状导线进行风洞试验,获得了不同冰形导线的气动稳定性损失特性。研究成果对于揭示覆冰输电线路舞动机理具有重要的科学参考价值,对于推动覆冰输电线路舞动预警系统的实现具有较高的工程实用价值。
进行风洞试验,测量亚音速流中圆柱体上半球转塔的非稳定表面压力场。这些测量值是使用与快速响应压敏涂料耦合的压力传感器获得的。分析了 0.5 马赫流动(Re D ≈ 2 × 10 6 )在三种不同转塔突出距离下产生的表面压力场数据。之前,使用适当的正交分解发现了转塔上的主要表面压力模式。结果表明,转塔向自由流的突出程度越大,展向反对称表面压力场波动的发生率就越高。这些反对称压力波动是由反对称涡脱落引起的。然而,当使用部分浸没的半球形转塔几何形状时,结果表明这种反对称模式的相对能量要低得多。这表明,随着突出物从部分浸没变为全半球配置,流场现象会发生转变。对这种所谓的“模式切换”的进一步研究是本文介绍的工作重点。这项研究主要依赖模态分析来确定炮塔和尾流表面压力场之间的相关性。研究发现,部分半球周围的表面压力场波动主要受尾流影响,而炮塔本身的流体结构影响很小。对于半球和半球对圆柱的配置,对称和反对称非稳定分离成为最大的影响,并与尾流波动相结合。
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...
低速设施中风洞流质量测量和评估的现代框架 随着测试的复杂性增加,对风洞测试测量精度的要求也越来越严格。在风洞测试时间减少和测试成本增加的环境下,重要的是在较长时间内建立、维护和统计控制风洞设施中测量链所有组件的精确校准和验证。本文介绍了在贝尔格莱德军事技术学院的 T-35 4.4 m × 3.2 m 低速风洞中建立和维护测量质量控制系统所做的努力。该设施测量质量的保证基于确保三个主要组成部分的质量:风洞测试部分的校准、所用仪器的校准以及标准风洞模型的定期测试。介绍了相关风洞校准测试的样本结果,并将其与其他设施的结果进行了比较。测试证实了该设施的整体质量良好,并且必须保持、定期检查和系统地记录所达到的质量水平。关键词:风洞流动质量;低速风洞;标准校准模型;AGARD-B;ONERA M4。1.简介 风洞测试是任何飞机设计和开发的重要组成部分。预测未来飞行物体的空气动力学行为和特性的通常做法是进行相对小规模模型的风洞测试。为了确保对风洞数据进行有意义的解释,必须了解和纠正影响结果的影响因素;修正后的数据应与来自不同风洞或自由空气情况的数据具有可比性,[1]-[9]。此外,最好采用或多或少标准的校准和测试程序,以使来自不同风洞的数据尽可能接近可比性。在测试模型的风洞结果可用于预测未来飞行物体的气动特性之前,必须确定模型支撑系统和非均匀气流条件的影响随着风洞试验对测量精度的要求越来越严格,试验的复杂性也随之增加,并且在风洞试验时间减少、试验成本不断上升的环境下,重要的是对风洞设施中测量链的所有组件进行准确的校准和验证,更重要的是,在较长时间内保持和统计控制 [10]。
非线性动态逆是针对大迎角机动问题研究最多的非线性控制技术。非线性动态逆是一种基于系统动力学逆的反馈线性化方法 [1]。通常,飞机动力学可分为两类:慢速动力学和快速动力学,F-16 也不例外。慢速动力学对于固定翼飞机是相同的,可以使用风轴微分方程推导。另一方面,快速动力学对于每架飞机都是独一无二的,在推导飞机的快速动力学时必须包括空气动力学数据库。本文使用了基于 NASA 兰利和艾姆斯研究中心的 F-16 风洞试验结果的亚音速气动数据库 [1]。该数据库适用于 和每种飞行条件。因此,它是在大攻角区域测试新开发的控制律的合适平台。在 Simulink 环境中开发了 F-16 的 6 自由度数学模型。数学模型包括气动数据库、发动机模型、大气方程和运动方程 [3]、[4]。开发了平飞、爬升、下降和稳定平转飞行条件下的配平算法 [5]。此外,还基于小扰动理论推导出了线性化算法 [6]。为了比较非线性动态逆控制律和线性控制律的性能,设计了横向和纵向运动的线性控制增强系统。采用特征结构分配技术综合了线性控制律。纵向控制器是一种简单的迎角控制指令系统,使用 F-16 飞机的短周期动力学设计而成。横向控制器是一种侧滑和稳定轴滚转速率指令系统,使用 F-16 飞机的线性化横向稳定轴方程设计而成。线性控制器的设计过程最终根据高度和速度安排增益矩阵,以实现全包络有效飞行控制律。使用预定义的大迎角机动对线性和非线性飞行控制律进行了比较。这种机动被定义为快速且同时的俯仰和滚转运动。虽然拉起运动在迎角和之间变化,但滚转运动在倾斜角保持恒定。随着攻角的增大,纵向和侧向动力学无法分离,因此增益调度线性控制器和非线性动态逆控制器的机动能力变得重要。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
太空运输系统,航天飞机运载机 HAER 编号 TX-116-L 第 5 页 此外,在记录时,有两个主要特征将两个 SCA 区分开来。第一个是飞机两侧靠近轨道器前支撑支柱的上层甲板窗户的数量;NASA 911 每侧有五个窗户,而 NASA 905 只有两个。第二个区别是 2012 年应用于 NASA 905 的乙烯基贴花。在 NASA 905 的每一侧、前门后部和主甲板窗户上方,有一系列图像,描绘了飞机搭载每个轨道器(企业号、哥伦比亚号、挑战者号、发现号、亚特兰蒂斯号和奋进号)和幻影鳐的次数;这些是 2012 年 3 月应用的。第二组贴花位于 NASA 905 两侧驾驶舱窗户的正下方;上面刻有参加轨道器最后一次渡轮飞行的 SCA 飞行员和飞行工程师的名字。14 历史:最初,航天飞机轨道器设计有吸气式发动机,用于将飞行器送入轨道和从太空返回;此外,发动机还可用于将轨道器从一个位置运送到另一个位置。然而,研究表明,这些发动机在设计上导致了重量问题。因此,工程师们开始研究将轨道器从潜在的远程着陆点运送到肯尼迪航天中心的替代方式。15 1973 年,NASA 正在考虑使用洛克希德制造的 C-5A 货机 16 和波音 747“巨型喷气式飞机”作为运送轨道器的潜在交通工具。1973 年 8 月,NASA 的 DFRC 授予波音公司一份价值 56,000 美元的合同,以研究使用 747 运送轨道器的可行性。该合同是波音公司提交的一份未经请求的提案的结果。这项为期 60 天的研究旨在确定此类运载机的作战要求、性能、成本、时间表和初步系统设计。17 1973 年 10 月,洛克希德公司获得了一份合同,内容包括模拟 C-5A 作为渡运机使用的风洞试验。轨道器比例模型的试验 14 Alan Brown,“NASA 905 上的新徽标描绘了渡运飞行历史”,2012 年 4 月 5 日,http://www.nasa.gov/centers/dryden/Features/sca_905_logos.html。此时,NASA 911 已退役。 Brewer,访谈,第 15 页。15 William G. Register,《747 空运航天飞机轨道器》,载于第十二届太空大会论文集,佛罗里达州可可海滩,1975 年 4 月 9-11 日(卡纳维拉尔技术协会理事会,1975 年),第 1-1 至 1-3 页。1972 年 4 月 14 日,肯尼迪航天中心被选为航天飞机的主要发射场。Jenkins,《航天飞机》,第 155 页。早在 1969 年 10 月,人们就认为肯尼迪航天中心也将成为航天飞机的主要着陆场。“12 寻求航天飞机控制系统研究”,Marshall Star,1969 年 10 月 22 日,第 4 页。16 C-5A 的原始版本由洛克希德公司于 1968 年至 1973 年间制造。这种大型军用运输机具有强大的空运能力,主要由美国空军使用。17 “波音获得穿梭渡轮合同”,X-Press,1973 年 8 月 3 日,第 2 页。