数字孪生是开发未来智能系统的一种方式。航空业带来了非常特殊的情况,因为大多数组件在整个生命周期内都不会留在第一架飞机 (A/C) 中,而且由于属于其他系统而不断变化。由于这些资产的价值很高,其中许多资产需要经过维护过程,然后安装到另一架飞机上。在本文中,为这些组件开发了一个数字孪生概念。为此,从不同领域得出需求并将其合并到新概念中。首先,考虑航空维护生态系统的利益相关者。然后解释数字孪生或数字孪生网络的概念。为了能够识别数字孪生中的数据集,必须在讨论航空组件及其流程的细节之前引入唯一标识符。最后描述了新概念。讨论了各种标识符、分布式系统以及生态系统中利益相关者的角色。
在过去的三十年中,飞机制造领域经历了重大变化,因为飞机制造的首选材料一直在从金属过渡到复合材料。复合材料的内在设计和操作优势推动了飞机结构和部件制造方式的根本变化。然而,随着新技术被引入航空业,考虑其各个方面会受到怎样的影响至关重要,最重要的是确保安全不受影响。作为航空业的重要组成部分和影响其安全的关键因素,在评估复合材料在航空领域引入的影响时,需要考虑维护活动和经过认证的航空维修技术人员 (AMT)。因此,进行的研究特别关注飞机维护活动,特别是涉及经过认证的 AMT 与复合材料的相互作用。这项研究的目的是强调和了解 AMT 对复合材料的看法和看法,以及从一线角度来看,航空维护活动如何随着新材料的引入而发生变化。从 AMT 收集到的信息是一种工具,可以帮助从维护角度了解潜在的陷阱、培训和资源的不足以及可能引发的安全威胁
数字孪生是开发未来智能系统的一种方式。航空业带来了非常特殊的情况,因为大多数组件在整个生命周期内都不会留在第一架飞机 (A/C) 上,而且由于它们属于其他系统而不断变化。由于这些资产的价值很高,许多组件需要经过维护过程,然后安装到另一架飞机上。本文为这些组件开发了一个数字孪生概念。为此,从不同领域得出需求并将其合并到新概念中。首先,考虑航空维护生态系统的利益相关者。然后解释数字孪生或数字孪生网络的概念。为了能够识别数字孪生中的数据集,必须在讨论航空组件及其流程的细节之前引入唯一标识符。最后描述了新概念。讨论了各种标识符、分布式系统以及生态系统中利益相关者的角色。
摘要 — 与传统飞机电力系统相比,电动飞机的二次系统具有成本和效率优势。然而,这些优势是以增加设计和分析复杂性为代价的。为了支持基于计算机的飞机电气系统建模和仿真,本文介绍了 ANSYS Simplorer 中的两个库。在系统级,开发了一个基于 VHDL-AMS 的行为飞机电气库,为设计人员提供了一种方便的方式来原型化和分析电力分配系统。库组件是作为通用组件开发的,可以轻松重复使用,并且能够(使用实验数据)进行修改以适应特定应用。结合库提供的多级组件,讨论了飞机电气系统的各个子系统。在设备级,提供了一个详细的功率半导体模型库,用于精确模拟电力电子。使用 Simplorer 中的设备特性工具,可以从制造商数据表中给出的电气和热特性中提取这些模型的参数。最后,讨论了具有多个控制回路的简化飞机发电和配电系统,以演示该库的用法。
摘要 本文评估了弹性评估网格 (RAG) 方法在飞机部件生产中的应用。为了进行评估,创建了基于 RAG 的变更过程特定模型。本文描述了涉及飞机部件生产的组织内工程相关变更提案的变更和批准流程。为此,本文利用业务流程建模和符号 (BPMN) 和功能共振分析方法 (FRAM) 来支持基于 RAG 的建模,这两者都有助于澄清变更管理流程中各功能之间的关系。本文介绍了一种针对航空业的弹性评估网格应用方法。结果是一家生产飞机部件的公司管理变更过程的模型,记录了四种弹性潜力的当前状态,公司管理层可以使用这些模型来提高公司员工的安全意识并提高组织弹性绩效的潜力。
摘要 本文评估了弹性评估网格 (RAG) 方法在飞机部件生产中的应用。为了进行评估,创建了基于 RAG 的变更过程特定模型。本文描述了涉及飞机部件生产的组织内工程相关变更提案的变更和批准流程。为此,本文利用业务流程建模和符号 (BPMN) 和功能共振分析方法 (FRAM) 来支持基于 RAG 的建模,这两者都有助于澄清变更管理过程中各功能之间的关系。本文介绍了一种针对航空的弹性评估网格应用方法。结果是一家生产飞机部件的公司的管理变革过程模型,记录了四种弹性潜力的当前状态,公司管理层可以使用这些潜力来提高公司员工的安全意识,并提高组织弹性绩效的潜力。
如今,创新的轻型结构和高度复杂的飞机部件均采用现代轻型材料(如碳纤维增强塑料 (CFRP))制成。在此背景下,航空工业中纤维复合材料部件的当前生产技术通常具有周期长、材料使用不理想以及返工或精加工工作量大等特点。一种有前途的技术可用于制造轻型、几何形状复杂且功能齐全的部件,既经济又省时,即在单级压缩成型工艺中结合使用热固性片状模塑料 (SMC) 与短切纤维增强材料和预浸渍定制连续纤维增强材料。与传统的复合材料生产技术相比,这种混合材料和工艺技术可缩短周期、实现功能集成、提高设计自由度、优化材料使用并减少返工。对于机舱、货舱以及二级结构飞机部件的制造,可以直接使用金属元件(如嵌件)并使用再生碳纤维。此外,该工艺技术可以完全自动化,从而提高经济效率。因此,本文通过分析和模拟生产适当产品的整体工艺链,探讨了这项新技术的潜力,特别是在降低成本和节省时间方面的潜力。
开发了基于商业软件 Ultis ® 的自动化任务序列,结合新的预处理和后处理工具,以实现对从大型复杂 CFRP 组件获得的超声波数据的全自动分析。在包含各种人工缺陷的参考面板上,结果 90/95 为 6.8 毫米。新工具包括 C 扫描投影优化器,可最大限度地减少 3D 到 2D 转换期间的缺陷变形,一种有效的分割方法,可解决具有挑战性的特征(共固化纵梁、层脱落、多种厚度变化),以及一种能够自动从 A 扫描集合中提取指示的新型缺陷检测算法。结果表明,该方法满足检测要求,同时显著缩短了分析时间。