CEASIOM,即飞机综合与综合优化方法的计算机化环境,是一个集成了特定学科概念设计工具的框架。在设计的早期阶段,能够预测飞机的飞行和操纵品质非常有用。为了对所研究的配置进行此操作,需要计算空气动力学数据库并将其与稳定性和控制工具相结合以进行分析。本文介绍了 CEASIOM 的自适应保真计算流体动力学模块如何计算飞机配置的空气动力学数据库,以及如何通过飞行控制系统设计器工具包模块分析该数据以确定飞机的飞行品质和控制规律。本文将预测的飞行品质与波音 B747 飞机的飞行测试数据进行比较,以验证整体方法的优良性。
姓名 资格 飞行员/飞行工程师执照编号 (根据需要添加方框)• FFS/FTD:该团队证明 符合飞机驾驶舱/直升机驾驶舱的配置 < 飞机运营商名称(如适用)、飞机/直升机类型 > 飞机/直升机的配置,且符合 < 飞行模拟训练设备类型和级别 > 的要求,并且模拟系统和子系统的功能与该飞机/直升机中的系统和子系统相同。该评估小组的飞行员还评估了飞行模拟训练设备的性能和飞行品质,并发现它代表了指定的飞机/直升机。 • FNPT:该小组证明代表符合 < 飞行模拟训练器类型和级别 > 要求的 < 飞机/直升机或飞机类别/直升机类型 > 的驾驶舱或座舱环境,并且模拟系统似乎可以像飞机类别/直升机类型一样运行。该评估小组的飞行员还评估了飞行模拟训练器的性能和飞行品质,并发现它代表了指定的飞机类别/直升机类型。
在飞行员/飞行器系统分析中使用人类飞行员的数学模型为飞行品质、稳定性和控制、飞行员/飞行器集成和显示系统考虑的工程处理带来了新的维度。作为此类模型的介绍,使用基本概念和特定物理示例为逐步开发人类飞行员作为动态控制组件的已知知识奠定基础。在此过程中,介绍了具有视觉刺激的单环系统和具有视觉刺激的多环系统的准线性模型,然后将其扩展到涵盖多环、多模态情况。还考虑了飞行员动力学和飞行员评级之间的经验联系。
在飞行员/飞行器系统分析中使用人类飞行员的数学模型为飞行品质、稳定性和控制、飞行员/飞行器集成和显示系统考虑的工程处理带来了新的维度。作为此类模型的介绍,我们使用基本概念和具体物理示例为逐步发展人类飞行员作为动态控制组件的已知知识奠定基础。在此过程中,介绍了具有视觉刺激的单回路系统和具有视觉刺激的多回路系统的准线性模型,然后将其扩展到涵盖多回路、多模态情况。还考虑了飞行员动力学和飞行员评级之间的经验联系。
生成气动数据库 (AEDB) 是 RLV 乃至整个航空航天飞行器开发中的一个重要方面,该数据库可描述飞行器的气动飞行品质。这些数据库通常通过简单的启发式模型从计算流体力学 (CFD) 模拟和风洞试验 (WTT) 中汇总而成。虽然这种经典方法适用于估算标称气动系数,但量化这些飞行前数据相对于最终飞行行为的不确定性仍然是一项艰巨的任务,需要大量的人类专业知识和“直觉”。然而,特别是对于运载火箭而言,这些不确定性对于确保稳健的制导和控制算法以及满足所选任务概况的飞行器性能至关重要。
商用运输飞机的结构载荷分析:理论与实践 TedL。Lomax,1996 航天器推进 Charles D. Brown,1996 直升机飞行动力学:飞行品质和仿真建模的理论与应用 Gareth Padfield,1996 飞机的飞行品质和正确测试 Darrol Stinton,1996 飞机的飞行性能 S. K. Ojha,1995 测试和评估中的运筹学分析 Donald L. Giadrosich,1995 雷达和激光截面工程 David C.Jenn,1995 动态系统控制简介 Frederick O. Smetana,1994 无尾飞机的理论与实践 Karl Nickel 和 Michael Wohlfahrt,1994 防御分析中的数学方法第二版 J. S. Przemieniecki,1994 高超音速气动热力学 John J. Bertin,1994 高超音速吸气式推进William H. Heiser 和 David T. Pratt,1994 实用进气气动设计 E. L. Goldsmith 和 J. Seddon,编辑,1993 国防系统的采办 J. S. Przemieniecki,编辑,1993 大气再入动力学 Frank J. Regan 和 Satya M. Anandakrishnan,1993 柔性结构动力学与控制简介 John L. Junkins 和 Youdan Kirn,1993 航天器任务设计 Charles D. Brown,1992 旋翼结构动力学与气动弹性 Richard L. Bielawa,1992 飞机设计:概念方法第二版 Daniel P. Raymer,1992 观测与控制过程优化 Veniamin V. Malyshev、Mihkail N. Krasilshikov 和 Valeri I. Karlov,1992 壳体结构的非线性分析 Anthony N. Palazotto 和 Scott T Dennis,1992 轨道力学 Vladimir A. Chobotov,1991 国防关键技术 空军技术学院,1991 国防分析软件 J. S. Przemieniecki,1991 超音速导弹进气口 John J. Mahoney,1991
飞行已经变得如此普遍,以至于我们倾向于将许多飞行细节视为理所当然。尽管如此,飞行是一个复杂的过程,涉及平衡、稳定性和控制机器,其设计既复杂又优雅。所有飞机都受相同的物理规则支配,但它们的运动细节可能完全不同,不仅取决于飞行器的形状、重量和推进力,还取决于其结构、控制系统、速度和大气环境。本书介绍了飞机的飞行动力学,特别关注用于分析、模拟、飞行品质评估和控制系统设计的数学模型和技术。在本章中,我们介绍了大多数飞机共有的配置的基本组件(第 1.1 节),并通过对当代飞机的描述提供了说明性示例(第 1.2 节)。全书使用的符号在第 1.3 节中介绍,并提供了一个基于纸飞机飞行的介绍性示例。
华航成立于1959年,即将迈入第56个年头。「留住满意的顾客与快乐的员工,为股东与社会创造最大价值」一直是华航自成立以来的经营理念。华航致力成为最值得信赖的世界级航空公司,以最佳的飞行品质,让每一位旅客都感到满意。截至2015年6月30日,华航客货机队规模已扩展至86架,航线网络覆盖全球29个国家115个航点。去年,在大家的共同努力下,华航及其关联企业交出亮眼的成绩单。2015年,受国际油价平稳、日圆贬值、大陆旅客经台过境限制即将解除等因素影响,旅客量持续增长,货运市场也逐渐回暖。感谢每一位华航员工、旅客、股东及伙伴的支持与鼓励。
飞行已经变得如此普遍,以至于我们往往认为飞行的许多细节都是理所当然的。然而,飞行是一个复杂的过程,涉及平衡、稳定性和控制一个设计既复杂又优雅的机器。所有飞机都受相同的物理规则支配,但它们的运动细节可能大不相同,不仅取决于飞行器的形状、重量和推进力,还取决于其结构、控制系统、速度和大气环境。本书介绍了飞机的飞行动力学,特别关注用于分析、模拟、飞行品质评估和控制系统设计的数学模型和技术。在本章中,我们介绍了大多数飞机共有的基本配置组件(第 1.1 节),并通过对当代飞机的描述提供了说明性示例(第 1.2 节)。第 1.3 节介绍了全书使用的符号,并提供了一个基于纸飞机飞行的介绍性示例。
外环控制因素是影响飞行员在最后进近期间手动调节下滑道、迎角和队列的能力的因素。本报告集中讨论前两个因素,即下滑道和迎角。目标是确定确保有效外环控制的关键属性,然后检查现有设计要求如何很好地解决这些属性。飞行品质和性能要求的组合适用于此领域,包括 MIL-F-8785C、MIL-STD-1797A 和海军的进近速度标准。首先,报告回顾了该主题的历史背景,讨论了技术方法,并预览了要应用的分析工具。其次,它给出了外环控制的状态,包括对航母着陆任务的描述、现有飞机特性以及一些描述飞行中模拟航母进近的数据。接下来的描述包含任务、飞机和飞行员的数学模型组件。报告的主要部分介绍了一系列有助于确定关键外环控制特性的分析。最后一部分给出了实施结果的结论和建议。技术方法适用