人工智能 (AI) 技术与人类工作流程的日益融合,带来了人工智能辅助决策的新范式,即人工智能模型提供决策建议,而人类做出最终决策。为了最好地支持人类决策,定量了解人类如何与人工智能互动和依赖人工智能至关重要。先前的研究通常将人类对人工智能的依赖建模为一个分析过程,即依赖决策是基于成本效益分析做出的。然而,心理学的理论模型表明,依赖决策往往是由情感驱动的,比如人类对人工智能模型的信任。在本文中,我们提出了一个隐马尔可夫模型来捕捉人工智能辅助决策中人机交互背后的情感过程,通过描述决策者如何随着时间的推移调整对人工智能的信任并基于他们的信任做出依赖决策。对从人类实验中收集的真实人类行为数据的评估表明,所提出的模型在准确预测人类在人工智能辅助决策中的依赖行为方面优于各种基线。基于所提出的模型,我们进一步深入了解了人类在人工智能辅助决策中的信任和依赖动态如何受到决策利害关系和交互经验等情境因素的影响。
随机步行(或马尔可夫链)是随机模型,在理论计算机科学中广泛使用。从经典上讲,通过图定义随机步行,其中节点是过程的可能状态,边缘代表可能的过渡。在每个步骤中,根据某些概率分布选择了当前状态的外向边缘,并达到相应的状态。马尔可夫链的理论是对许多算法的分析的基础:一个显着的例子是Schönin的算法,这是最知名的令人满意的经典算法之一(SAT)问题[1]。马尔可夫连锁店的一个重要属性是所谓的打击时间,它量化了我们需要执行的步行数量(预期),以达到或达到一些固定的目标状态,但给定一些初始条件。对打击时间的分析是搜索问题的强大工具[2,3,4,5],因为这些数量通常与复杂性指标密切相关。作为一个例子,请考虑令人满意的问题:给定F(x),我们从某个分配x 0开始(例如,x 0 =(0,。。。,0)),在每个步骤中,我们选择一个变量以随机均匀地翻转。这可以正式化为在超立方体上的随机步行,并且给定F的分配x ∗,从x 0到x ∗的击中时间平均告诉我们要达到该分配所需的步骤数。一种运行Markov链的算法并在每个步骤检查当前状态是否满足F的时间复杂性与打击时间成正比。在过去的几十年中,几项研究工作致力于将随机步行的概念扩展到量子设置,目的是实现某些速度
交互协议:在每个时间步骤 h ∈ [ H ] 中,代理和规划器观察状态 skh ∈S 并选择自己的动作 akh 和 bkh 。然后,下一个状态由环境 skh +1 ∼ P h ( · | skh , bkh ) 生成,并且它们观察
高阶马尔可夫连锁店(HOMC)是基于过渡概率的常规模型,美国农业部(USDA)国家农业统计局(NASS)使用,随着时间的推移研究农作物旋转模式。但是,由于分类数据表示为指示器(或虚拟)变量,因此请与稀疏性和识别能力问题相称。实际上,参数空间的维度与分析所需的人类所需的顺序相吻合。虽然简约的表示减少了参数的数量,如文献所示,但它们通常会导致预测较少。大多数简约的模型都经过大数据结构的培训,可以使用替代算法对其进行压缩并有效处理。因此,使用新的HOMC算法和在一系列农业条件上进行的深层神经网络(DNN)进行了彻底评估和比较,以确定哪种模型最适合于运营农作物特定土地涵盖美国农业(US)农业。在本文中,在2011年至2021年之间,六个神经网络模型从六个农业强化县进行了作物旋转数据,这些县反映了中西部和美国南部种植的主要农作物的范围以及各种农作物旋转模式。六个县包括:北达科他州的伦维尔;内布拉斯加州珀金斯;德克萨斯州黑尔;伊利诺伊州利文斯顿;伊利诺伊州麦克莱恩;和俄亥俄州的谢尔比。结果表明,DNN模型在2021年获得所有县的总体预测准确性较高。所提出的DNN模型允许摄入长时间序列数据,并且比被认为预测美国特定农作物特定土地覆盖的新的HOMC算法可鲁棒地实现更高的精度值。
通常,马尔可夫决策过程是“一个离散的随机控制过程。它提供了一个数学框架,用于在结果部分是随机的,部分地在决策者控制的情况下对决策进行建模。MDP是有用的研究通过动态编程解决的优化问题。”(Wikipedia)
有关第一步的讨论,请参阅 Robert W. Arnold,《国会预算办公室如何制定十年经济预测》,工作文件 2018-02(国会预算办公室,2018 年 2 月),www.cbo.gov/publication/53537。有关第三步的讨论,请参阅国会预算办公室,“使用国会预算办公室的贝叶斯向量自回归模型估计经济预测的不确定性”(2023 年 1 月),www.cbo.gov/publication/58883。有关相关讨论,请参阅 Mark Lasky,《国会预算办公室的小规模政策模型》,工作文件 2022-08(国会预算办公室,2022 年 9 月),www.cbo.gov/publication/57254。
摘要 为保证飞机正常、稳定飞行,飞机上采用了多种传感器及相应的仪表系统来监测/控制当前的飞行状态,其得到的数据在保证飞行安全的同时也给飞行员带来了很大的负担。鉴于此,飞机座舱自动化辅助系统已成为当今的研究热点。本文基于自动化辅助系统启动后,通过飞行操作的不同阶段,可以预测飞行员未来的操作行为,从而根据飞行员的操作习惯为其提供辅助。通过对飞行员操作行为及飞行过程任务要求的分析与建模,建立了MDP(Markov Decision Process,马尔可夫决策过程)模型,并采用价值迭代算法寻找最优预测序列,最后通过飞行操作仿真实验验证了算法的可操作性。为飞行员操作的安全性和驾驶舱自适应自动化辅助系统的侵入性提供了新的解决方案。
摘要 为保证飞机的正常稳定飞行,飞机上采用了多种传感器及相应的仪表系统来监测/控制当前的飞行状态,而得到的数据在保证飞行安全的同时也给飞行员带来了很大的负担。因此,飞机座舱自动化辅助系统成为当今的研究热点。本文基于自动化辅助系统启动后,可以通过飞行操作的不同阶段预测飞行员未来的操作行为,从而根据飞行员的操作习惯为其提供辅助。通过对飞行员操作行为和飞行过程任务要求的分析与建模,建立了MDP(Markov Decision Process)模型,并利用价值迭代算法寻找最优预测序列,最后通过飞行操作仿真实验验证了算法的可操作性。为飞行员操作的安全性和座舱自适应自动化辅助系统的侵入性提供了一种新的解决方案。
摘要 为保证飞机的正常稳定飞行,飞机上采用了多种传感器及相应的仪表系统来监测/控制当前的飞行状态,而得到的数据在保证飞行安全的同时也给飞行员带来了很大的负担。因此,飞机座舱自动化辅助系统成为当今的研究热点。本文基于自动化辅助系统启动后,可以通过飞行操作的不同阶段预测飞行员未来的操作行为,从而根据飞行员的操作习惯为其提供辅助。通过对飞行员操作行为和飞行过程任务要求的分析与建模,建立了MDP(Markov Decision Process)模型,并利用价值迭代算法寻找最优预测序列,最后通过飞行操作仿真实验验证了算法的可操作性。为飞行员操作的安全性和座舱自适应自动化辅助系统的侵入性提供了一种新的解决方案。
摘要 为保证飞机的正常稳定飞行,飞机上采用了多种传感器及相应的仪表系统来监测/控制当前的飞行状态,而得到的数据在保证飞行安全的同时也给飞行员带来了很大的负担。因此,飞机座舱自动化辅助系统成为当今的研究热点。本文基于自动化辅助系统启动后,可以通过飞行操作的不同阶段预测飞行员未来的操作行为,从而根据飞行员的操作习惯为其提供辅助。通过对飞行员操作行为和飞行过程任务要求的分析与建模,建立了MDP(Markov Decision Process)模型,并利用价值迭代算法寻找最优预测序列,最后通过飞行操作仿真实验验证了算法的可操作性。为飞行员操作的安全性和座舱自适应自动化辅助系统的侵入性提供了一种新的解决方案。