磁性记忆(MSM)合金的添加剂制造的最新发展表明,激光粉末床融合(L-PBF)工艺的高潜力用于制造具有复杂几何形状的基于功能性的多晶Ni-GA基于Ni-Mn-GA的作用。这项研究采用了系统的实验方法来开发和优化制造Ni-MN-GA晶格的L-PBF工艺。进行了两个独特的阶段进行实验:首先,以构建的批量样本中的选择性Mn蒸发表征;其次,研究应用过程参数对晶格支撑的相对密度和几何完整性的影响。使用优化参数制造的晶格的内密度高约99%,并经过热处理,用于化学均匀化,谷物生长和原子序。热处理的晶格在环境温度下表现出七层的调制(14m)马氏体结构,相变温度和与化学成分相对应的磁性特性。主要是,结果表明,可以通过后处理热处理在单个晶格支撑杆中获得有益的“竹粒颗粒”结构。加,他们还确认使用稀释的结构(例如晶格)可以有效防止在大量样品中观察到的裂纹。尽管对该主题还有足够的进一步研究空间,但这些结果突显了L-PBF在生产新一代基于MSM的致动设备方面的高潜力。关键字:晶格结构,4D打印,添加剂制造,激光粉末床融合,磁性记忆材料
抽象的微结构依赖性变形和断裂行为是针对使用激光指导能量沉积(L-DED)方法打印的添加成分成分分级合金(CGA)的,以探索核能系统中不同金属关节的替代方法。从扫描电子显微镜(SEM)中的电子后散射衍射(EBSD)映射显示出明显的微观结构过渡,并降低了奥氏体形成元件(Ni和Mn),从奥斯丁岩()主导结构,包括一个复杂的复合结构,包括一个复杂的复合结构,并完全含有铁矿(ferrite),然后又有一位(),martensente and martense and themente and and and and and and and and and,以及ferente ant and and o and' 结构。EBSD数据,并使用Kikuchi衍射模式分析分析了变形机制和微观结构的演变。还使用扫描透射电子显微镜(STEM)进行了互补分析。富含Ni/Mn的奥斯丁岩含量的微观结构显示出两步性马塞塞利志转换的复杂变形机制(→→'),而保留在铁矿和/或mar虫基质中的次要奥氏体相位显示了单个变换途径(')。普通的错位滑行和通过部分脱位滑动的孪生在奥氏体变形中也很常见。同时,铁氧体和马氏体晶粒主要由普通位错滑和明显的晶格(晶粒)旋转变形。静态拉伸骨折也高度依赖于局部组成和相成分。
摘要:电子束自由曲面制造是一种送丝直接能量沉积增材制造工艺,其中真空条件可确保对大气进行出色的屏蔽并能够加工高反应性材料。在本文中,该技术应用于 α + β 钛合金 Ti-6Al-4V,以确定适合坚固构建的工艺参数。基于所选工艺参数,单个焊珠的尺寸和稀释度之间的相关性导致重叠距离在焊珠宽度的 70-75% 范围内,从而产生具有均匀高度和线性堆积速率的多焊珠层。此外,使用交替对称焊接序列堆叠具有不同数量轨道的层允许制造墙壁和块等简单结构。显微镜研究表明,主要结构由外延生长的柱状前 β 晶粒组成,具有一些随机分散的宏观和微观孔隙。所开发的微观结构由马氏体和细小的 α 层状结构混合而成,硬度适中且均匀,为 334 HV,极限抗拉强度为 953 MPa,断裂伸长率较低,为 4.5%。随后的应力消除热处理可使硬度分布均匀,断裂伸长率延长至 9.5%,但由于热处理过程中产生了细小的 α 层状结构,极限强度降至 881 MPa。通过能量色散 X 射线衍射测量的残余应力表明,沉积后纵向拉伸应力为 200-450 MPa,而进行应力消除处理后应力几乎为零。
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。
^^^ Tanabe, Y., 121-139 致密型 (CT), 7,48,65, 104, j - ^ ^ ^ ^ ^ ^ ^ ^u g, 16, 103, 211 122, 149, 175, 193, 215, 275 ^^^j^^^ ^ L., 5-30 锁孔, 296 j ^ ^ ^ ^ j j ^ ^ j ^ ^ ^^^_^J2 光谱载荷, 246,257,261,297 j^ansgranular, 8,20, 51, 70,91, 107, 稳定性, 19 155^ 30^ 堆垛层错能, 38 转变点, 8, 98 钢透射电子显微镜奥氏体,122(TEM)34 97奥氏体不锈钢,6,16,32,175,y^联合设计,'164'^^孪生,20,56,76铸碳和低合金,142,294铁-镍,6铁-硅,64,106 4340,193Vacas-Oleas,C,140-160,293-312高锰,32,48,121真空,85,182马氏体时效,19真空熔炼,32,48,65温和,43,275Verkin,B.I.,84-101Stephens,R.I.,1-2,140-160, 293- 空洞,158 312,315-320 应变幅,32,35,143 W 应力强度因子 ^ang,C.M.,293-312 闭合(^ci)或打开(/Top),67,^^^^ 预应力,194 ^^' '^^' 2^^^ 焊缝/焊接件,8,122,175,275 有效(A^eff),67,71,181,196,^jj^gj,^ ^ 210-237 283 固有有效(AKett),114 X 阈值(AKth),65,71,87,106,152,174,178,194 ^"'"^y衍射,87 应力集中因子(^t),253,y 296 应力释放,275 屈服强度,34,69,96,142,175 拉伸区,135 Yokobori,T.,121-139 条纹,8,51,87,91,107,155,杨氏模量,7,18,77,97,133,199,287,304 184,220,278 亚晶粒,97 钇,212 取代原子,42 Yu,W.,63-83
^^^ Tanabe, Y., 121-139 致密型 (CT), 7,48,65, 104, j - ^ ^ ^ ^ ^ ^ ^ ^u g, 16, 103, 211 122, 149, 175, 193, 215, 275 ^^^j^^^ ^ L., 5-30 锁孔, 296 j ^ ^ ^ ^ j j ^ ^ j ^ ^ ^^^_^J2 光谱载荷, 246,257,261,297 j^ansgranular, 8,20, 51, 70,91, 107, 稳定性, 19 155^ 30^ 堆垛层错能, 38 转变点, 8, 98 钢透射电子显微镜奥氏体,122(TEM)34 97奥氏体不锈钢,6,16,32,175,y^联合设计,'164'^^孪生,20,56,76铸碳和低合金,142,294铁-镍,6铁-硅,64,106 4340,193Vacas-Oleas,C,140-160,293-312高锰,32,48,121真空,85,182马氏体时效,19真空熔炼,32,48,65温和,43,275Verkin,B.I.,84-101Stephens,R.I.,1-2,140-160, 293- 空洞,158 312,315-320 应变幅,32,35,143 W 应力强度因子 ^ang,C.M.,293-312 闭合(^ci)或打开(/Top),67,^^^^ 预应力,194 ^^' '^^' 2^^^ 焊缝/焊接件,8,122,175,275 有效(A^eff),67,71,181,196,^jj^gj,^ ^ 210-237 283 固有有效(AKett),114 X 阈值(AKth),65,71,87,106,152,174,178,194 ^"'"^y衍射,87 应力集中因子(^t),253,y 296 应力释放,275 屈服强度,34,69,96,142,175 拉伸区,135 Yokobori,T.,121-139 条纹,8,51,87,91,107,155,杨氏模量,7,18,77,97,133,199,287,304 184,220,278 亚晶粒,97 钇,212 取代原子,42 Yu,W.,63-83
当今的大趋势,如电子产品的小型化、汽车电气化的推动以及对可持续建筑能源技术的需求,都需要具有极端或动态可切换热性能的新型热管理和存储材料。为了实现这一目标,了解材料的热传输和相关特性对于材料开发至关重要,需要可靠的高通量热特性。在本次研讨会上,我将讨论与极端热导率 (Λ)、新型热特性技术和热能应用相关的四个主题。首先,我将介绍 BA 和同位素增强 BN 中超高 Λ 的建立,其值分别为 1000 W m-1 K-1 和 1600 W m-1 K-1,远远超过铜 (400 W m-1 K-1)。这些材料具有成为微电子和电力电子领域下一代散热器的潜力,超越成本低廉的合成金刚石。它们的极高值可以通过现代第一性原理理论来理解,该理论仔细考虑了声子、同位素无序和其他缺陷的相互作用。其次,我将展示一类新型相变材料 (PCM),即 Ni-Mn-In 合金,用于固态热开关的动态热管理,以提高各个领域的能源效率,例如汽车发动机、快速充电电池和建筑围护结构。这些材料通过马氏体转变引起的电子迁移率变化在 300 K 附近表现出高对比度(高达 ~75%)的可逆 Λ 变化,在高温相中显示出更高的 Λ(与常见 PCM 中的趋势相反)。第三,我将介绍一种基于结构化照明和热成像的首创热计量法,用于高通量材料表征。该技术能够高效地并行研究多个样品,并有可能实现百万像素属性映射,这是传统激光技术无法实现的。它还可以方便地测量各向异性的热
Hoeganaes 公司新泽西州辛纳明森 08077 摘要 汽车行业的设计师利用双相 (DP) 钢在碰撞过程中吸收大量能量的能力,从而提高驾驶员和乘客的安全性。车辆底盘上可从使用它们中受益的位置通常由撞击期间需要吸收的能量决定。考虑到这些能量吸收性能要求,设计了一种名为自由烧结低合金 (FSLA) 的 DP 钢,用于金属粘合剂喷射打印 (BJT),并应用于 BJT 和激光粉末床熔合 (PBF-LB),以将增材制造 (AM) 的使用扩展到这些应用中。之前的论文 [1-5] 证明了这种 DP 合金的多功能性,其中设计了多种热处理来提供所需的微观结构控制,以满足锻造 DP 低合金钢的广泛机械性能。结果表明,转变产物的比例可以从几乎全是铁素体变为由高百分比的贝氏体和/或马氏体以及少量铁素体组成。本文研究了原始 FSLA 的变体 FSLA 改进型 (FSLA Mod) 的冲击能量与经过几种热处理形成的微观结构的关系。研究重点关注微观结构的变化和由此产生的断裂表面与各自冲击能量的关系。此信息可用于设计适当的热处理,以产生正确的微观结构,满足多种应用对机械性能的需求。简介 DP 钢是一种用途广泛的先进高强度钢 (AHSS),通过热处理定制其微观结构,能够拥有各种机械性能。双相微观结构是通过在相图的两相 + (铁素体 + 奥氏体)区域对这些低碳钢进行临界退火并以预定速率冷却而产生的。
摘要:热锻模具受到周期性热应力作用,经常以热疲劳、磨损、塑性变形和断裂的形式失效。为延长热锻模具的使用寿命并降低总生产成本,提出了一种热锻模具梯度多材料线材电弧增材再制造方法。多材料梯度界面的性能对决定最终产品的整体性能起着至关重要的作用。本研究将热锻模具再制造区分为过渡层、中间层和强化层三个沉积层。在5CrNiMo热锻模具钢上进行了梯度材料线材电弧增材制造实验,对梯度界面的微观组织、显微硬度、结合强度和冲击性能进行了表征和分析。结果表明,梯度添加剂层及其界面无缺陷,梯度界面获得了高强度的冶金结合。梯度添加剂层的组织从底层到顶层呈现贝氏体到马氏体的梯度转变过程。显微硬度从基体层到表面强化层逐渐增加,在100 HV范围内形成三级梯度变化,3个界面的冲击韧性值分别为46.15 J/cm 2 、54.96 J/cm 2 、22.53 J/cm 2 ,冲击断口形貌从延性断裂到准解理断裂,梯度界面力学性能表现为硬度和强度梯度增加,韧性梯度降低。采用该方法再制造的热锻模具实际应用,平均寿命提高了37.5%,为热锻模具梯度多材料丝电弧增材再制造的工程应用提供了科学支撑。
经常更换磨损的铁轨在轨道上带来了巨大的经济负担,这也引起了铁路运营的重大干扰。通过激光粉末沉积(LPD)恢复磨损的导轨可以大大降低相关的维护成本。这项研究的重点是使用LPD来修复标准美国铁路的破产。最小硬度为85 hrb的304L不锈钢沉积物的微观结构由奥氏体,d -frerite和Sigma组成。微孔分散在整个沉积物中,并在轨道沉积界面上发现了微裂纹。珠光体导轨底物的中度硬度为94 hrb。珠粒,珠光皮热影响区的最大硬度为96 hrb,对于典型的导轨仍低于97 hrb的最小硬度。要增加硬度或以上97 HRB并减轻微结构缺陷,AS修复的导轨进行了热处理过程。AS处理的导轨的平均硬度显着增加,即103 hrb。此外,将多孔和粗粒沉积材料转化为可渗透和细粒度的微观结构。然而,热处理加强了轨道沉积界面的微裂纹,并导致了马氏体形成并增加了父轨中的微孔。在热处理和预热期间,基本导轨的隔离为有问题结果的解决方案。最终发现LPD过程是修复导轨的有前途的技术。2021 Tongji大学和Tongji大学出版社。 Elsevier B.V.的发布服务 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。2021 Tongji大学和Tongji大学出版社。Elsevier B.V.的发布服务这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。