随着可机动飞行器和计划进入深空(即超越地球同步地球轨道(GEO))的飞行器越来越多,空间环境变得越来越拥挤,空间领域感知(SDA)和空间交通管理(STM)变得越来越具有挑战性。由于地球轨道卫星和地月轨道卫星之间的距离很大且观测几何有限,因此空间基地月领域感知任务的轨道设计是一个重要课题。必须为地月空间物体建立复杂的天体动力学模型,因为月球引力不能像在地球轨道飞行器动态模型中那样被忽略或视为地月物体跟踪动态模型的扰动。地月空间体系在天文学、行星际任务分级、月球探索和通信以及地球轨道插入等应用方面具有重要价值,因此越来越受到航天工业的关注 [1]。放置在地月共线拉格朗日点 L1 和 L2 的航天器可以避免地球和月球的重力井、表面环境问题以及人造和天然空间碎片。这些航天器需要较低的驻留推进剂(每秒厘米级),并且可以在 L1 和 L2 之间或地月空间和日地空间之间飞行 [2]。
工程生物材料 (ELM) 是一类新型材料,旨在合成 21 和/或由生物体填充。ELM 有可能降低材料制造中的能源成本,并提供包括自修复和 23 传感在内的新型材料功能。然而,材料制造的能源成本主要来自用于建筑和机器的刚性材料的生产 24。为了大幅减少碳排放,25 ELM 必须能够替代其中一些刚性材料。然而,由活细胞合成的天然材料不够坚硬,无法替代大多数刚性工程材料 27。此外,目前最坚硬的 ELM 中的细胞活力还不足以实现这些材料的潜在可持续性优势。对刚性 ELM 的需求将需要新的方法来增强驻留细胞活力和/或将活细胞与刚性支架相结合 30。在天然材料中,骨骼是一种罕见的刚性材料 31,它由能够保持多年活力的细胞合成和功能化。骨骼有望为克服挑战提供宝贵的经验,以实现用于承重目的的 ELM 所需的活力和 33 机械性能。34
摘要:大多数人类计算机界面都建立在操纵抽象表示的范式上。当计算机用于艺术表演或作为社会联系的调解人时,这可能是限制的,我们依赖于体现思维的素质:直觉,上下文,共鸣,歧义和流畅性。我们探索了一种设计交互的替代方法,我们称之为新兴接口:相互作用利用无监督的机器学习将设计的抽象替换为上下文派生的紧急表示。该方法提供了创建界面定制的单个人的机会,以不断发展并根据个人的需求和负担来调整界面,并更深入地桥接我们许多非数字交流的复杂和不精确的互动。我们通过植根于音乐,舞蹈和AI的艺术研究探索这种方法,并具有部分紧急的系统。系统使用从第一位作者衍生出的即兴运动的体制的身体形象来将移动的身体映射到声音中。我们在三名舞者的驻留期间探索该系统。我们反映了这种替代方式思考互动方式的更广泛的含义和挑战,以及它可以帮助用户避免受系统设计师的假设的限制。
仅对肿瘤测试的样本要求:将完整的形式转发到材料驻留用于块选择的组织病理学实验室。病理学家将审查可用材料,并选择最合适的测试块。仅用于MLPA测试的血液样本,并将病理报告的副本发送给Beaumont医院分子病理实验室。肿瘤报告的副本也将发送给组织病理学实验室以获取记录。病理学家的信息:请指出它是化学疗法还是化学后活检样本,因为这可能会影响测试结果。请选择具有最大肿瘤含量的块(理想情况下> 50%高级浆液性癌肿瘤核含量,最小坏死,但是请注意,这也将在参考实验室重新评估)。应优先考虑样本的发送。将快递的组织病理学报告的副本发送给:Beaumont医院分子病理实验室,Beaumont医院,都柏林9,D09 V2N0。如果进行询问,请致电(01)809 2856与分子病理联系,或发送电子邮件至molecular@beaumont.ie。
鸟苷酸结合蛋白 (GBP) 是一种大型干扰素诱导 GTP 酶,可执行针对弓形虫的重要宿主防御活动,弓形虫是一种具有全球重要性的侵入性细胞内 api-complexan 原生动物寄生虫。弓形虫会建立寄生空泡 (PV),保护寄生虫免受宿主细胞内防御机制的侵害。鼠 GBP (mGBP) 可识别弓形虫 PV,并组装成超分子 mGBP 同源和异源复合物,这些复合物是破坏 PV 膜所必需的,最终导致对空泡驻留病原体的细胞自主免疫控制。我们之前已表明 mGBP2 在弓形虫免疫控制中起着重要作用。在此,为了阐明 mGBP2 的功能,我们报告了半乳糖凝集素 9 (Gal9) 是参与对弓形虫免疫的关键 mGBP2 相互作用伙伴。有趣的是,Gal9 也在弓形虫 PV 处积累并与 mGBP2 共定位。此外,我们可以通过 CRISPR/Cas9 介导的基因编辑证明 Gal9 是弓形虫生长控制的必要条件。这些发现清楚地表明,Gal9 是 mGBP2 协调的细胞自主宿主防御弓形虫机制的关键因素。
本文使用广义流体系统仿真程序(GFSSP)(通用流网络代码)提出了一个多节点有限体积模型的冷冻和填充。在马歇尔太空飞行中心进行了通风冷却(VCNVF)测试,在那里进行了一个飞行箱中的坦克,并从供应罐中装满了液氮。在VCNVF测试中,在通风阀打开时,储罐部分冷却。部分冷却后,关闭了排气阀,储罐被填充而没有任何通风。开发了测试设置的集成数值模型。该模型包括来自供应罐的传输线,带喷嘴和实心壁的目标储罐,以及带通风阀的排放线。将储罐离散为多个流体节点和分支,以表示ullage和液氮以及多个固体淋巴结,以表示储罐壁和结构。根据池沸腾相关性计算固体到流体之间的热传递,这些相关性包括膜,过渡和成核沸腾,以及沸腾前和沸腾后的自然对流。与液体喷雾接触时,该模型还解释了油箱中蒸气的冷凝。将储罐中预测的压力,驻留质量,壁和ullage温度与测试数据进行了比较。
I. 引言 本指南旨在协助申办方对药品的免疫毒性潜力进行非临床评价。在本指南中,免疫毒性定义为非预期的免疫抑制或刺激(包括超敏反应),包括旨在作为免疫调节剂的药物的夸大药理学作用而产生的不良反应。2 本指南适用于药品,包括小分子药物和寡核苷酸,以及某些生物制品,如生物技术衍生的治疗性蛋白质(本文称为生物制药)。在本指南中,药品一词将用作涵盖所有这些产品类型的通用术语。细胞和基因疗法、佐剂疫苗和血液制品不属于本指南的讨论范围。一般而言,FDA 的指南文件并未规定具有法律强制执行力的责任。相反,指南描述了机构当前对某个主题的想法,除非引用了特定的监管或法定要求,否则应仅将其视为建议。机构指南中的“应该”一词的使用意味着建议或推荐某事,但不是要求。 II. 背景 免疫系统是一个复杂且受到严格监管的系统,涉及多个生物成分(例如,循环肽、蛋白质和细胞、组织驻留细胞以及
太空任务操作的高成本促使多个航天机构优先开发自主航天器指挥和控制技术。深度强化学习 (DRL) 技术为创建复杂、多方面的操作问题的自主代理提供了一个有前途的领域。这项工作研究了将 DRL 驱动的策略生成算法应用于航天器决策问题的可行性,包括构建航天器决策问题的策略,例如马尔可夫决策过程、降维途径、使用专家领域知识进行简化、对超参数的敏感性以及面对错误建模的环境动态时的鲁棒性。此外,在屏蔽深度强化学习的新颖改编中,考虑通过将这些方法与构造正确的控制技术相结合来确保这些方法的安全性。这些策略针对原型低保真驻留场景和高保真姿态模式管理场景进行了演示,涉及飞行遗产姿态控制和动量管理算法。研究发现,DRL 技术与这些问题的其他黑盒优化工具或启发式解决方案相比具有优势,并且需要与深度学习社区中广泛使用的测试数据集类似的网络规模和训练持续时间。
摘要牛呼吸道疾病(BRD)是牛奶行业中最常见和最昂贵的疾病之一,对全球粮食安全和该行业的经济稳定产生了重大不利影响。牛呼吸道微生物组与健康和疾病密切相关,可以在治疗BRD时提供替代治疗的见解。like特异性的微生物组群落,将上呼吸道和下呼吸道的表面定居,由动态和复杂的生态系统组成。呼吸生态系统中的不平衡与BRD之间的相关性已成为热门研究主题。因此,我们总结了BRD的发病机理和临床迹象以及呼吸菌群的改变。当前的研究技术和健康呼吸道中的微生物组的生物地球化学也得到了回顾。我们讨论了驻留微生物和病原体定植的过程以及宿主的免疫反应。尽管在某种程度上已经揭示了微生物群和BRD之间的关联,但解释了BRD与呼吸微生物营养不良有关的发展可能会成为即将进行的研究的方向,这将使我们能够更好地理解呼吸道微生物组的重要性及其对动物健康和性能的贡献。关键字:牛,牛呼吸道疾病,菌群,生物地理学,宿主微生物相互作用,肺炎
摘要。背景/目的:由于病毒是癌症的主要病因还是合并症的问题仍未得到解决,我们使用基因组学和生物信息学方法研究了肾细胞癌 (RCC) 环境中对巨细胞病毒 (CMV) 的潜在免疫反应。材料和方法:具体来说,我们评估了实体组织正常驻留、T 细胞受体 (TCR) 互补决定区 3 (CDR3) 和 CMV 抗原的化学互补性评分 (CS),并确定较高或较低的 CS 组是否与较高或较低的生存概率相关。结果:事实确实如此,所有此类分析一致表明,代表较高 TCR CDR3-CMV 抗原化学 CS 的病例的总体和无进展生存率较低。这一基本结果是针对两个独立的 RCC 数据集和多个 CMV 抗原获得的。结论:结果提出了一个问题,即全身性 CMV 感染在多大程度上可能代表 RCC 的重要合并症。肾细胞癌 (RCC) 是肾脏最常见的恶性肿瘤,是男性第六大常见癌症。RCC 的最大风险因素是吸烟 (1, 2)。遗传因素也可能发挥作用,例如存在 VHL 基因的突变形式 (2)。RCC 通常预后良好,五年生存率