Kai Mulcock,四年级,物理专业。作为我完成的第一项生物实验室工作,这是一个很好的介绍!有同学带领我上课很有帮助,因为我在询问和学习不同主题时感到更加自在和自信(尽管我对 A 级以外的任何生物学背景一无所知)。由于我不是生物学专业的学生,所以我不能谈论太多理论,但是,看到物理学中的一些东西的应用非常有趣!它提供了一个有用且必要的步骤,帮助我了解这是否是我想要进一步探索的领域,同时也向我展示了作为非生物学学生我可以填补哪些空白!
金属有机骨架 (MOF) 是一类多样化的材料,由有机配体与金属离子反应形成由多孔网络组成的晶体配位化合物。MOF 具有高内部表面积和易于调节的化学性质,因此已被用于各种各样的应用,[1] 包括:气体存储和分离、[2] 催化、[3] 传感、[4] 水净化、[5] 药物释放、[6] 和电子学。[7] 然而,MOF 的不溶性使其很难加工成实际应用所需的复杂形状和图案,从而限制了它们在复杂设备中的使用。[8] 因此,人们探索了各种各样的方法来在表面上生长、沉积和图案化 MOF。 [9] 这些技术包括:喷涂、[10] 旋涂、[11] 浸涂、[11,12] 软光刻、[13] 微流体[14] 和 3D 打印、[15] 静电纺丝[16] 和凝胶整体法。[15c,17]
主链修饰的进步正在推动具有增强的生物稳定性和耐受性谱的核酸治疗剂的发展。我们已经开发了一种基于α异源主链糖的新型7',5'-α-BC-DNA(ABCDNA)支架,并先前证明了寡核苷酸含有这种修饰的寡核苷酸,该修饰显示了成功的靶向外显子鞋鞋。在这里,我们显示了含有AbcDNA核苷酸的Gapmer反义寡核苷酸(ASOS)的第一个生物物理和体内基因敲低功效的初步结果,而不是使用完善的2'MoE修饰碱基。
引言乳腺癌(BC)是最常见的癌症,与全球女性最与癌症相关的死亡人数最多。bc发生在青春期后的所有年龄段的女性中。在2022年,有230万妇女被诊断出患有卑诗省的妇女,在全球范围内造成约670,000人死亡1。尽管在早期检测和治疗BC方面取得了进展,但转移,但显着使治疗复杂化,并且仍然是癌症相关死亡的主要原因2,3。转移是指癌细胞从原发性肿瘤部位扩散以在不同解剖部位建立的过程2。这些扩散的细胞很难治疗,快速生长,并且会导致在转移部位4的器官衰竭。因此,了解驱动BC转移的详细分子机制对于制定更有效的治疗干预措施至关重要。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。 这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。 这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。 PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。 例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。这些修饰通常与癌症的结果不良和增强的转移能力相关,这为将其定为潜在治疗剂的基本原理7,9。该新闻通讯将探讨α-微管蛋白乙酰化在BC转移中的作用,其生物学意义及其治疗潜力。
图 29 (a) 每个 I/O 电阻测量的开尔文结构;(b) 键合铜柱的 SEM 横截面 ......................................................................................................... 44 图 30 带 Ru 封盖的 Cu-Cu 键合测试台 ............................................................................. 45 图 31 铜上钌的沉积过程 ............................................................................................. 45 图 32 30 分钟 FGA(合成气体退火)退火后表面 Cu 和 Ru 的百分比 [98] ............................................................................................................. 46 图 33 450°C FGA 退火后,带有针孔的 Ru 表面上的扩散 Cu ............................................................................. 47 图 34 用于研究填充的测试台制造流程 ......................................................................................... 49 (b) 使用 Keyence 7000 显微镜对集成结构进行的顶视图,描绘了顶部芯片上的通孔密度 ............................................................................................................................. 50 图 36 (a) 200 次循环氧化铝 ALD 后扫描 EDX 映射区域的 SEM 图像;(b) 集成结构的顶视图,突出显示了填充覆盖研究区域;(c) EDX 映射结果描绘了铝和氧 pe 的区域 ............................................................................................................................. 51 图 37 200 次循环氧化铝 ALD 后脱粘底部芯片的 FIB 横截面描绘 ............................................................................................................................. 52 图 38 (a) 200 次循环真空清除 ALD 后 EDX 研究的不同区域 - 底部芯片正下方通孔区域(区域 A)、距最近通孔 300 µm 的区域(区域 B)、靠近边缘的区域(区域 C); (b) 三个 r 中的 Al/Si 比率 ...................................................................................................................................... 52 图 39 (a) 集成结构的对角线切割;(b) 描绘平滑填充区域和无填充的受损区域后集成结构横截面的近视图;(c) 描绘填充高达 300 µm 的横截面的未放大图像 ............................................................................................. 54 图 40 (a) ZIF-8 MOF 化学和结构;(b) 示意图表示 ALD ZnO 和转化为气相沉积 MOF,体积膨胀和间隙填充约为 10-15 倍。 ........................................................................................................................................... 56 图 41 在完全填充芯片到基板间隙后,距离最近通孔 300 µm 的集成结构横截面的 EDX 映射.............................................................................57 图 42 横截面的 SEM 图像显示抛光模具未渗透到通孔和芯片与基板的间隙中,从而使上述结果可信 ............................................................................................. 58 图 43 (a) 测试台示意图,顶部芯片具有通孔 Cu-Cu 键合到底部基板;(b) Cu-Cu 键合测试结构的 SEM 横截面(面 A);(c) 键合前顶部芯片表面的铜垫/柱(面 B);(d) 键合前底部芯片表面的带有金属走线的铜柱(面 C) ............................................................................................................................. 59 图 44 20 nm ZnO ALD 后脱键合的底部芯片概览;(b) 通孔下方未沉积填充的区域 ............................................................................................................. 60 图 45 顶部芯片靠近通孔的区域,显示扩散半径为 (a) 572 µm,通孔直径为 240 µm; (b) 75 µm 直径通孔的 364 µm .............................................................. 61 图 46 20 nm ZnO ALD 后的脱粘底部芯片概览,a) 脉冲时间 250 ms 和温度 150°C;(b) 脉冲时间 1 秒和温度 150°C ................................................................................ 62 图 47 反向混合键合的工艺顺序 ............................................................................................. 63 图 48 (a) 1 个 MOF 循环后脱粘底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表明已完全渗透............................................................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样,显示了 500 nm MOF ............................................................................................................................................. 65 图 50 (a) 5 个 MOF 填充循环后脱粘底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)
提出,建筑,修改,操作和退役小型研发项目的设施;常规实验室操作(例如化学标准和样品分析的制备);并且经常进行小型试点项目(通常不到2年),以在演示行动之前验证一个概念,前提是建筑或修改将在先前受到干扰或发达的地区内部或连续(如果有活跃的公用事业和当前使用的道路易于访问)。未包括在此类别中的示威行动,这意味着按规模规模采取的行动,以表明技术是否可以在更大的规模上可行并适合商业部署。b3.15使用纳米级材料的小型室内研发项目
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月22日。; https://doi.org/10.1101/2024.06.28.601275 doi:biorxiv Preprint
uhrf1在受精后主要迁移到卵和胚胎中的细胞质,其中少量的UHRF1在某些区域(例如ICR)中维持甲基化修饰的细胞核中剩余少量。另一方面,除了受精后立即卵和胚胎外,所有UHRF1均易位到细胞核中,并在与细胞分裂相关的DNA复制过程中复制甲基化修饰。由于使用卵的实验受到局限性,因此研究小组使用人类培养的细胞发现NLRP5和OOEEP与构成SCMC的核心蛋白之间的结合。研究小组还产生了一条细胞系,可以通过药物诱导的诱导UHRF1(称为Cuhrf1:图1),该细胞系已被修饰以将其定位为细胞质,就像卵子一样,并检查了Cuhrf1在NLRP5和OOEP存在下CuHRF1变化的蛋白质稳定性。我们发现,在OOEEP存在下,CuHRF1的稳定性不会改变,但是在NLRP5存在下,Cuhrf1的稳定性增加了两倍以上(图2)。我们还发现,NLRP5缺陷小鼠的卵中的细胞质和细胞核中UHRF1蛋白的量均降低。该结果表明,在易位进入细胞核后,稳定的UHRF1的一部分可能稳定存在。
随着数字环境已变得更加融合到我们的日常生活中,虚拟现实(VR),增强现实(AR)和混合现实(MR)平台在最近的十年中越来越受欢迎。新技术正在使用传感器技术调整这些范式,以获取有关2D和3D空间中位置跟踪的相关数据。在这种情况下,机器学习已成为具有可访问性和负担能力的关键技术。这些模型的使用提供了对传感器输入的准确解释,这可能会创建可靠的系统。在这项技术方面,特定的感兴趣领域是交互式游戏,以及系统如何从这些技术进步中受益以创造沉浸式体验。此外,Bowling等人的研究。(2006),探索计算机游戏中机器学习的领域,确定其在增强游戏智能和玩家参与度中的重要作用。
黄油中的生动结构颜色是由光子纳米结构散射光引起的。结构颜色用于众多生物信号功能,并具有重要的技术应用。从光学上讲,这种结构是充分理解的,但是对它们在体内发展的洞察力仍然很少。我们表明,肌动蛋白与黄油翼鳞片中的结构颜色形成密切相关。使用成人和发展中H. sara的虹彩(结构上有色)和非冰箱尺度之间的比较,我们表明虹彩尺度具有更密集的肌动蛋白束,导致倾斜脊密度增加。超分辨率的微分析跨三个遥远相关的黄油种类揭示,肌动蛋白在尺度发育过程中反复重新安排,并且在形成光学纳米结构时至关重要。此外,在这些后期的发育阶段进行肌动蛋白扰动实验导致H. Sara的结构颜色几乎几乎总损失。总体而言,这表明肌动蛋白在黄油含量尺度的结构颜色形成过程中起着至关重要的直接模板作用,从而提供了在鳞翅目中可能具有普遍性的脊模式机制。