摘要 — 循环平面正交场放大器 (RPCFA) 由密歇根大学设计、制造和测试。RPCFA 由多个射频源驱动,频率范围为 2.40 至 3.05 GHz,功率为 1 至 800 kW。脉冲电压由带陶瓷绝缘体的密歇根电子长束加速器 (MELBA-C) 输送到阴极,该加速器配置为提供 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1.0- μs。RPCFA 表现出零驱动稳定性和 15% 的带宽。在设计频率为 3 GHz、功率低于 150 kW 的情况下,微波信号的放大率观察到平均增益为 7.87 dB,变化性较高,σ = 2.74 dB。过滤该数据集以仅包含具有相同电压和电流分布的镜头,可获得 6.6 ± 1.6 dB 的增益。当注入的微波功率超过 150 kW 时,平均增益增加到 8.71 dB,变化性降低到 σ = 0.63 dB。峰值输出功率接近 6 MW,RF 击穿限制了设备的最大输出功率。
可扩展的超高功率锂离子存储的石墨烯间种子层的多层打印Sang ho lee*,Colin Johnston和Patrick S. Grant S. Li 4 Ti 5 O 12,多层,喷雾打印,锂离子电容器一个低电阻石墨烯的界面层是针对多层锂离子
SiCnifikant 项目研究并展示了 SiC 基半导体器件 (SiC-MOSFET) 在高达 250 kW 的驱动逆变器中的优势,满足了汽车的特殊要求。特别是,新型功率模块的构建和电机的集成旨在展示 SiC 在实现高开关速度、提高功率密度和效率方面的最佳使用。为了达到高达 75 kW/升的功率密度,在最大电流下将逆变器中的功率损耗降低 50% 并提高整个系统的可靠性,该项目从半导体芯片、模拟到组件原型设计(用于最终评估)等各个层面开展研究。该项目采用整体方法来满足系统设定的目标。从高档车辆开始,电动动力系统的最重要要求已定义如表 1 所示。
我们所有使用高功率激光器的人都经历过激光损伤,通常是在我们最不想发生的时候。有时,仅仅是一道意外的闪光就意味着需要更换光学元件,但情况往往更糟,因为单个涂层损坏就会导致整个系统故障。我们的大部分工作是认证脉冲激光系统的光学元件,以防止这种灾难性事件的发生。近年来,我们收到越来越多的 CW 测试请求。这些光学元件主要用于制造业和医疗行业,而这些行业的损坏成本同样高昂。随着输出功率的增加,损坏越来越普遍,认证 CW 光学元件也变得更加必要。它们似乎在低于脉冲系统中的性能和阈值预期的功率水平下损坏。我们在此报告了一项关于不同基底材料在脉冲和 CW 性能方面的研究,这些研究由它们的激光诱导损伤阈值 (LIDT) 值给出。LIDT 值表示光学元件在不损坏的情况下可以承受的最大功率密度(或在 CW 的情况下,最大线性功率密度)。
报告还介绍了美国能源部 (DOE)、业界和其他电网利益相关者为提高对电池功能的了解、验证新的存储应用和寻求开发先进技术解决方案的机会所做的努力。这些努力包括研究采用场景、技术差距、政策影响以及当前的市场和监管格局。美国能源创新生态系统继续投资于研发 (R&D)、建模、测试、现场演示和技术援助,以扩大可用选项的范围并帮助政策制定者将新兴机会与合适的解决方案联系起来。在技术方面,除了电池本身之外,这些努力还扩展到与电池系统相关的电力电子设备和控制装置。虽然这不是本报告的重点,但要实现稳健的实施,需要有足够的制造能力和生产能力来满足所设想的技术解决方案的要求。
工业电气化水平不断提高,航空航天也不例外,有多个研究项目,范围从电动飞机到全电动垂直起降飞机和大型电动推进系统。然而,由于航空航天环境的严酷性、严格和必要的安全约束和法规以及对高功率密度的需求等,航空航天高功率应用的挑战比汽车等其他行业更为复杂。一些众所周知的挑战与电磁危害、在加压和非加压区域使用轻型高压元件或开发安全和优化的储能概念有关。空中客车电动飞机系统 (EAS) 目前正在对高功率混合电动航空推进系统进行研究,使这些挑战能够得到更清晰的识别和理解,从而为缩小这些差距所需的解决方案和未来研究提供了第一个方向。
������������ �������������� ���������� ���� ������� ���� ���������� ���� ���� ���������� ���� ������ ���� ��� �� �������������������� ���������� ���� �������� ���� ���������� ��� ��������
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。