摘要:电力系统中长期愿景及其形态演化分析是引领电力行业发展的重要先导性研究,尤其在我国提出2060年实现温室气体净零排放的新目标下,如何加快发展可再生能源成为新的关注点。本文尝试从灵活性平衡的视角探究含高比例可再生能源的未来电力系统形态演化指标。在回顾国际上关于未来电力系统发展愿景相关文献的基础上,总结了未来电网的特征及其驱动力的变化,并提出了一种全局敏感性分析方法。考虑到影响演化路径的多重不确定性因素,抽取大样本模拟电力系统演化,并以西北电网为例,分析了我国高比例可再生能源的演化路径。
来源:https://www.aeroreport.de/en/artikel/ werkstoffentwicklung-fuer-die-luftfahrt 航空部件应用示例
本文档中描述的产品不适用于植入或其他直接生命支持应用,这些应用的故障可能会导致人身伤害。本文档不提供任何形式的保证,包括但不限于适销性或特定用途适用性的默示保证。
预计将开发具有高能量密度和高安全性的全稳态电池(ASSB)。使用高容量负电极(例如锂金属和硅)以及高容量的正极电极(例如基于硫基于硫的氧化物和富含Li的氧化物材料)的主要挑战是,正和负电极的活性材料在充电和排放期间经历较大的体积变化。在该项目中,将开发适合这些高容量电极的机械性能,电化学稳定性和离子电导率的固体电解质。我们还专注于界面设计,以形成和维护电极和电解质,电池制造过程之间的固体界面以及高级分析和计算方法,以阐明循环过程中界面处发生的机制。该图显示了使用基于硫的阳性电极和晚期阳性液体使用富含Li的氧化物阳性电极的发育目标。我们将建立基本技术,以加速具有高能量密度和高安全性的Assb的商业化,并在将来实现GX。
Ladics,G.S。,Selgrade,M.K.,2009。Identifying Food Proteins with Allergenic Potential: Evolution of Approaches to Safety Assessment and Research to Provide Additional Tools.调节毒理学和药理学54,S2 – S6。https://doi.org/10.1016/j.yrtph.2008.10.010
本文档可能包含初步信息,IBM 可能会随时更改,恕不另行通知。IBM 不保证使用本文中的信息或应用程序不会受到第三方知识产权索赔,也不承担因使用本文中的信息而产生的任何责任或义务。本文档中的任何内容均不构成 IBM 或第三方知识产权的明示或暗示许可或赔偿。
内存单元尺寸的不断减小提高了内存密度并降低了功耗,但也影响了其可靠性。Rowhammer 攻击利用这种降低的可靠性来诱导内存中的位翻转,而无需直接访问这些位。大多数 Rowhammer 攻击都以软件完整性为目标,但最近的一些攻击表明它可用于破坏机密性。延续这一趋势,我们在本文中观察到 Rowhammer 攻击与内存瞬时功耗密切相关。我们利用这一观察结果设计了 HammerScope,这是一种基于 Rowhammer 的攻击技术,用于测量内存单元的功耗。由于功耗与内存的活动水平相关,因此 HammerScope 允许攻击者推断内存活动。为了展示 HammerScope 的攻击能力,我们使用它发起了三次信息泄露攻击。我们首先展示 HammerScope 可用于破坏内核地址空间布局随机化 (KASLR)。我们的第二次攻击使用内存活动作为 Spectre 攻击的隐蔽通道,使我们能够从操作系统内核泄露信息。最后,我们演示了如何使用 HammerScope 进行网站指纹识别,从而危及用户隐私。我们的工作证明了找到 Rowhammer 攻击的系统解决方案的重要性。
内存单元尺寸的不断减小提高了内存密度并降低了功耗,但也影响了其可靠性。Rowhammer 攻击利用这种降低的可靠性来诱导内存中的位翻转,而无需直接访问这些位。大多数 Rowhammer 攻击都以软件完整性为目标,但最近的一些攻击表明它可用于破坏机密性。延续这一趋势,我们在本文中观察到 Rowhammer 攻击与内存瞬时功耗密切相关。我们利用这一观察结果设计了 HammerScope,这是一种基于 Rowhammer 的攻击技术,用于测量内存单元的功耗。由于功耗与内存的活动水平相关,因此 HammerScope 允许攻击者推断内存活动。为了展示 HammerScope 的攻击能力,我们使用它发起了三次信息泄露攻击。我们首先展示了 HammerScope 可用于破坏内核地址空间布局随机化 (KASLR)。我们的第二次攻击使用内存活动作为 Spectre 攻击的隐蔽通道,使我们能够泄露操作系统内核的信息。最后,我们演示了如何使用 HammerScope 进行网站指纹识别,从而泄露用户隐私。我们的工作证明了找到 Rowhammer 攻击的系统解决方案的重要性。
信息如有变更,恕不另行通知。Microchip 的名称和徽标、Microchip 徽标、MPLAB 和 PIC 是 Microchip Technology Incorporated 在美国和其他国家/地区的注册商标。MPASM、MPLIB、MPLINK、mTouch 和 PICkit 是 Microchip Technology Incorporated 在美国和其他国家/地区的商标。本文提及的所有其他商标均为其各自公司的财产。© 2009,Microchip Technology Incorporated。保留所有权利。2009 年 5 月在美国印刷 DS39941B
基于Zno纳米材料的气体传感器的高工作温度可能会缩短传感器的寿命并增加其功耗。在气体响应和温度方面,增强ZnO纳米材料的气体传感器的挥发性有机化合物(VOC)感应性能对于它们的实际应用至关重要。将贵金属装饰到纳米结构上是改善其感应特性的有效方法。在此,引入了水热合成的ZnO珊瑚色纳米板,并引入了PD纳米颗粒的装饰,以实现改善的VOC感应性能。研究了合成原始和PD E ZnO珊瑚样纳米板的形态,晶体结构,组成,原子结构以及气体传感特性。结果显示,基于PD E ZnO的传感器的原始ZnO传感器的最佳工作温度从450 C的最佳工作温度显着降低。通过用PD纳米颗粒的表面装饰,在350 C最佳工作温度下对丙酮的响应提高了三倍。PD E ZnO传感器的响应时间和恢复时间比原始ZnO传感器的速度快三倍。PD E ZnO传感器达到了17 ppt的理论检测极限,在350 C时达到3.5 E 2.5 e 2.5 ppm丙酮的灵敏度。传感器的瞬态稳定性在几个开/关开关从空气到气体的开关周期后,揭示了制造设备的有效可重复性。还讨论了多孔PD E ZnO珊瑚样纳米板传感器的合理机制。©2021作者。Elsevier B.V.的出版服务代表河内越南国立大学。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。