Alexander J.,Kiauk,The Crystal,西门子伦敦科技创新地标建筑。设计者:Zest Communications Ltd,第 34 页。出版商:Booklink,斯洛文尼亚 智能建筑设计方法,其中被动设计(如图所示)有助于提高能源效率,还旨在集成数字化自动化系统,包括 BMS 和 BEMS,它们技术先进,通过开放协议的 ML(机器学习)与不同的制造商进行交互。
摘要 大脑设计的许多方面可以理解为进化驱动力追求代谢效率的结果。除了神经计算和传输的能量成本外,实验证据表明突触可塑性在代谢上也要求很高。由于突触可塑性对于学习至关重要,我们研究了这些代谢成本如何进入学习。我们发现,当突触可塑性规则被简单实施时,训练神经网络在存储许多模式时需要大量的能量。我们提出,通过精确平衡不稳定形式的突触可塑性与更稳定的形式来避免这种情况。这种算法称为突触缓存,可成倍提高能源效率,可与任何可塑性规则一起使用,包括反向传播。我们的研究结果对实验观察到的多种形式的神经突触可塑性产生了新的解释,包括突触标记和捕获现象。此外,我们的结果与节能的神经形态设计有关。
对于诸如此类的NP硬性问题,由于解决方案空间的指数增长,通常在很大的尺度上无法获得精确的解决方案,并且经常采用启发式方法。一种针对此问题的启发式方法(不能保证找到最佳解决方案)是使用进化算法[2]。特别是遗传算法[3]是最流行的进化算法类型,通常用于组合优化问题。另一种启发式方法是使用答案集编程[4]。这是一种声明性编程的一种形式,针对这样的复杂搜索问题。文献中可以找到许多其他方法,但是到目前为止,迄今为止尚未证明适用于工业规模的问题,而决策通常会基于专家判断。因此,对空中客车和宝马是否对量子方法可能提供了一种实用方法来为诸如此类的物流问题提供最佳或近乎最佳的解决方案。
Auto-Mag® DNA 片段分选纯化回收试剂(磁珠法)是一款基于顺磁珠技术开发的高性能试剂,专为满足 下一代测序 (NGS) 文库构建中的 PCR 产物、DNA 片段和 RNA 的纯化需求而设计,同时支持 DNA 片段的大 小分选与高效回收。在 PCR 产物纯化方面,该试剂提供了单管和 96/384 孔板两种灵活格式,通过优化的缓 冲液选择性地结合 >100 bp 的 PCR 扩增产物,利用简便的清洗步骤去除多余引物、核苷酸、盐和酶,最终 使用低盐洗脱缓冲液或水进行温和高效的洗脱。在 DNA 片段大小分选中,用户可通过调整试剂与 DNA 样 本的体积比,精准选择目标 DNA 片段范围,并通过结合、洗涤和洗脱的简单操作回收分布均匀、符合实验 需求的目标 DNA 片段。
摘要。本研究对高效太阳能电池的先进材料进行了全面研究,重点研究了钙钛矿、有机和量子点技术。通过一种有效的方法,包括材料测定、合成、特性分析、器件开发和性能分析,该研究在钙钛矿太阳能电池中实现了 22% 的卓越效率,超过了有机(9%)和量子点电池(12%)。稳定性测试表明,钙钛矿电池在 1000 小时后仍保持了其初始效率的 90%,优于有机(75%)和量子点电池(80%)中观察到的相对衰减。与相关研究的比较分析强调了我们的发现的重要性,包括将经验转化为激子元素、可行的设计练习和可行太阳能电池模型的创新方法。
基于参数化量子电路的量子机器学习算法是近期量子优势的有希望的候选者。虽然这些算法与当前一代量子处理器兼容,但设备噪声限制了它们的性能,例如通过诱导损失景观的指数平坦化。诸如动态解耦和泡利旋转之类的错误抑制方案通过降低硬件级别的噪声来缓解这个问题。这个技术工具箱最近增加了脉冲高效转译,它通过利用硬件原生的交叉共振相互作用来减少电路调度时间。在这项工作中,我们研究了脉冲高效电路对量子机器学习近期算法的影响。我们报告了两个标准实验的结果:使用量子神经网络对合成数据集进行二元分类,以及使用量子核估计进行手写数字识别。在这两种情况下,我们发现脉冲高效转译大大减少了平均电路持续时间,从而显著提高了分类准确率。最后,我们将脉冲高效转译应用于汉密尔顿变分假设,并表明它延迟了噪声引起的荒芜高原的出现。
摘要:视觉识别是当前计算机视觉、模式识别乃至人工智能领域最重要和最活跃的研究领域之一。它具有重要的基础意义和强烈的工业需求,特别是现代深度神经网络(DNN)和一些受大脑启发的方法,在大量训练数据和新的强大计算资源的帮助下,大大提高了许多具体任务的识别性能。虽然识别准确率通常是新进展的首要关注点,但效率实际上相当重要,有时对于学术研究和工业应用都至关重要。此外,整个社区也非常需要对效率带来的机遇和挑战有深刻的见解。虽然已经从各个角度对效率问题进行了一般性调查,但据我们所知,几乎没有任何调查系统地关注视觉识别,因此不清楚哪些进展适用于它以及还应该关注什么。在本综述中,我们回顾了最近的进展,并提出了提高 DNN 相关和脑启发式视觉识别方法效率的新方向,包括高效的网络压缩和动态脑启发式网络。我们不仅从模型的角度进行研究,还从数据的角度进行研究(现有综述中没有这种情况),并重点关注四种典型数据类型(图像、视频、点和事件)。本综述试图通过全面的综述提供系统的总结,以作为有价值的参考,并激励从事视觉识别问题的研究人员和从业者。
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,表征了从 180 Ta 到 175 Ta 的同位素记录产量的轫致辐射谱。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并且聚焦激光能量转化为高能轫致辐射的转换效率达到创纪录的 2%。
摘要 近年来基于深度学习的目标检测框架取得了辉煌的成就。然而,现实生活中的交通标志检测仍然是大多数最先进的目标检测方法面临的巨大挑战。现有的深度学习模型不足以有效地从现实条件下的大图像中提取小交通标志的特征。本文提出了一种基于高效端到端深度网络模型的新型小交通标志检测方法,解决了小交通标志检测难题。所提出的方法将三个关键见解融入已建立的You Only Look Once (YOLOv3) 架构和其他相关算法中,具有速度快、精度高的特点。此外,适当引入网络剪枝以最小化网络冗余和模型大小,同时保持有竞争力的检测精度。此外,还采用了四个尺度预测分支来显著丰富多尺度预测的特征图。在我们的方法中,我们调整损失函数以平衡误差源对总损失的贡献。通过在清华-腾讯100 K交通标志数据集上的实验进一步证明了网络的有效性和鲁棒性。实验结果表明,我们提出的方法比原始的YOLOv3模型取得了更好的准确率,与相关文献中的方案相比,我们提出的方法不仅在检测召回率和准确率上表现出色,而且在检测速度上也获得了1.9 – 2.7倍的提升。
影响CRISPR/Cas9介导的基因组编辑效率的因素[25]。目前,在单子叶植物和双子叶植物中广泛使用的真核U3和U6启动子分别从水稻和拟南芥中分离得到[26]。tRNA的应用是提高植物基因组工程效率的有效策略[12]。在本研究中,我们成功地利用OsU3-tRNA启动子组合调控双子叶烟草中PDS sgRNA和LHT1 sgRNA的表达,达到了比AtU6和AtU6-tRNA更高的突变率(图1),这是出乎意料的。可能的原因是,能够募集Pol-III复合物的tRNA内部启动子元件补偿了水稻OsU3启动子在双子叶植物中的部分功能[10,12]。结果表明,使用OsU3-tRNA启动子组合可以提高基因组编辑效率,并可应用于单子叶植物和双子叶植物