摘要:随着人们对信息和高数据传输速率的需求日益迫切,现代通信技术越来越重视光学卫星通信的研究。本文主要讨论光学卫星通信技术的发展趋势。首先,介绍该技术的基本系统图和框图。此外,还将介绍光学、信号处理、捕获、跟踪、指向(ATP)和力学等关键技术。在最后一部分,将光学卫星与其他通信技术进行比较,以分析卫星通信的未来趋势。如图所示,它将与5G技术融合;此外,它可能朝着实现终端设备小型化、空地一体化网络(SAGIN)和智能光学卫星通信的方向发展。最后,自由空间光(FSO)通信将为人类带来巨大的好处,因为它可以带来便利,提高通信效率并促进经济繁荣。因此,科学家应该更加重视光学卫星通信技术并对其进行更多研究,帮助人们过上更好的生活。
连同低地球轨道 (LEO) 卫星星座,在平流层运行的高空平台站 (HAPS) 系统(或高空伪卫星)有可能解决提供无处不在的连接这一挑战。尽管在推出高速移动网络以服务主要人口中心方面取得了巨大进展,但地面连接永远无法真正覆盖地球表面的每个部分。为了充分兑现 5G 的承诺并解决“数字鸿沟”,必须为地面移动网络不可行的人口稀少地区提供覆盖。这不仅对于改善个人通信尤为重要,而且因为许多物联网 (IoT) 传感器需要位于这些地区。本文概述了 HAPS 和卫星在形成“空中网络”中的作用,并描述了在设计地球与卫星或 HAPS 之间以及平台之间回程数据所需的高数据速率(10Gbps 以上)通信链路时的一些 RF 挑战。
单光摄像机的惊人发展为科学和工业成像创造了前所未有的机会。但是,这些1位传感器通过这些1位传感器进行的高数据吞吐量为低功率应用创造了重要的瓶颈。在本文中,我们探讨了从单光摄像机的单个二进制框架生成颜色图像的可能性。显然,由于暴露程度的差异,我们发现这个问题对于标准色素化方法特别困难。我们论文的核心创新是在神经普通微分方程(神经ode)下构建的暴露合成模型,它使我们能够从单个观察中产生持续的暴露量。这种创新可确保在Col-Orizers进行的二进制图像中保持一致的曝光,从而显着增强了着色。我们演示了该方法在单图像和爆发着色中的应用,并显示出优于基准的生成性能。项目网站可以在https://vishal-s-p.github.io/projects/ 2023/generative_quanta_color.html
以一个在这方面已经遥遥领先的科学界为例。高精度地质年代学家通过测量铀、铅和氩的同位素来精确确定岩石的年龄,在为自己设定黄金标准方面取得了长足进步。他们成立了 EARTHTIME 组织来协调他们的国际努力。UPb 实验室正在共享标准、重量法解决方案和示踪剂,而 Ar 同位素实验室正在探索样品预处理、辐照和分析方案以及数据缩减方面的差异,所有这些都是为了共同努力,尽量减少实验室间的偏差并提高数据质量。这项努力对地球科学的重要性可以用“没有日期,就没有比率”的口头禅来概括,而该组织最近取得的成功在已发表的文献中显而易见。然而,这种自我检查并不容易,正如该活动的领导者 Sam Bowring 所说,“你必须在门口检查你的自我。”
1979 年 12 月 3 日,移动通信使用蜂窝系统开始了第一代移动通信。此后,移动通信的无线接入技术每 10 年就会演变成新一代系统。随着技术的发展,服务也在不断进步。从第一代 (1G) 到第二代 (2G),服务主要是语音通话,但最终发展到简单的短信。第三代 (3G) 技术使任何人都可以使用以“i-mode”为代表的数据通信服务,发送图片、音乐和视频等多媒体信息。在第四代 (4G) 中,通过 LTE (长期演进) 技术实现了超过 100 Mbps 的高数据速率通信,导致智能手机的普及和各种多媒体通信服务的出现。4G 技术以 LTE-Advanced 的形式不断发展,现在已实现超过 1 Gbps 的最大数据速率。进一步的技术进步使第五代 (5G) 成为现实。 DOCOMO于2020年3月25日利用其5G移动通信系统[1-1]推出5G商用服务。
图 1.1.2 显示了 6G 的潜在频谱带和可能影响不同频谱相关方面的关键技术。图 1.1.2 中显示的频段是 6G 的潜在候选频段,因为目前没有指定用于 6G 的频段。7 至 24 GHz 范围可以利用大规模多输入多输出 (MIMO) 技术来确保良好的覆盖范围,相对于 3 至 5 GHz 之间的传统频率提高容量,并为上层毫米波和太赫兹 (THz) 频率范围提供控制平面。另一方面,毫米波和太赫兹频谱可用于提供高数据速率并实现精确的定位和感知。智能中继器和可重构智能表面 (RIS) 等技术可以在改善上层毫米波和太赫兹频率范围的覆盖范围方面发挥重要作用。这些频率范围还可实现高分辨率和精确的传感/定位应用。无蜂窝 MIMO 使网络经济有利于在频谱的 mmWave 部分进行部署。
摘要:日本国家信息通信技术研究所 (NICT) 目前正在为立方体卫星开发高性能激光通信终端,旨在为需要从轨道传输大量数据的低地球轨道卫星提供高数据速率通信解决方案。通信系统的一个关键部分是高功率光放大器,它能够为传输的信号提供足够的增益,以便能够在对立方体卫星平台的能量和功率影响最小的情况下关闭其对应接收器上的链路。本文介绍了与立方体卫星外形尺寸兼容的小型化 2-W 空间级 2 级掺铒光纤放大器 (EDFA) 的开发,据作者所知,它显示了空间合格 EDFA 的最佳功率与尺寸比。介绍了在实际条件下以及完整的空间鉴定和测试下的性能结果,证明该模块可以支持短时间低地球轨道地面下行链路以及长时间卫星间链路。
1.0简介卫星通信是一项有前途的技术,因为它能够为大量具有高数据速率服务的用户服务。尽管光纤链接大量部署,但由于其固有的长距离通信的固有优势,卫星通信技术被认为占主导地位行业(Jayadev,2011年)。更高容量卫星链路的用户需求的几何增加激发了卫星操作员以更高频段(例如KA波段及以上)操作以适应必要的数据速率(Leshan等人。,2016年)。移动到这些较高频段采用了通信系统设计,这些设计需要在发射器和接收器之间开发链路预算。这些设计在接收器的解调器上提供了足够的信号水平,以达到所需的性能和可用性水平(Pratt等,2003)。可以使用位错误率(BER)和载波(C/N)比率评估链接的卫星系统性能。成功设计沟通链接涉及许多因素,例如各种损失以及天线功率和增益(Kilcoyne等人。,2016年)。
摘要 —天空地一体化网络(SAGIN)是第六代(6G)通信中最有前途的先进范式之一。SAGIN 可以为互联应用和服务支持高数据速率、低延迟和无缝网络覆盖。然而,随着量子计算机容量的不断增加,SAGIN 中的通信面临着巨大的安全威胁。幸运的是,用于在 SAGIN 中建立安全通信的量子密钥分发(QKD),即 SAGIN 上的 QKD,可以提供信息论安全性。为了最大限度地降低具有异构节点的 SAGIN 中的 QKD 部署成本,本文提出了一种使用随机规划的 SAGIN 上的 QKD 资源分配方案。所提出的方案通过两阶段随机规划(SP)制定,同时考虑了安全要求和天气条件等不确定性。在大量实验下,结果清楚地表明,所提出的方案可以在各种安全要求和不可预测的天气条件下实现最优部署成本。索引词——量子密钥分发、空地一体化网络、资源分配、随机规划。
立方体卫星激光红外交联 (CLICK) 任务将展示推动小型航天器星间通信技术发展的最新技术。该任务的主要目标是在轨演示两颗六单元 (6U) 小型卫星之间的全双工(发送和接收)激光交联,也称为光通信,两颗卫星之间的距离在 15 至 360 英里(25 - 580 公里)之间,数据速率超过 20 兆比特每秒 (Mbps)。该任务还将展示精确的卫星间时钟同步和 10 厘米级的测距。能够发送和接收激光通信的微型光学收发器将在两颗卫星之间形成通信交联,并通过新的精细指向功能支持它们的对准。由于激光通信高数据速率传输的功率效率,微型光学收发器是对射频(RF)技术的改进,这减轻了对小型平台在尺寸、重量和功率方面已经很严格的限制的影响。