hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
基于对少量原子的操纵或超低温下产生的量子效应的各种高灵敏度技术的开发,导致了大量量子器件的迅速普及,其中许多现在开始实现商业应用。同时,这些器件依靠从一个量子态到另一个量子态的离散状态变化,具有极高的灵敏度,使它们成为探测假定的超轻粒子或场与量子器件本身之间非常弱的相互作用的理想探测器。这导致它们在低能粒子物理领域得到广泛应用,以及近年来对与轴子、ALP 和许多其他暗物质候选者相关的低能相空间的快速探索(许多评论,包括 [1-4],都涵盖了这些应用)。这种敏感性似乎使这些设备不适合高能物理应用,因为高能物理应用的检测机制主要依赖于通过粒子与物质相互作用的准连续效应来检测和重建单个粒子的属性,将相互作用粒子对探测器主体原子进行多次电离的连续过程所沉积的电荷积分。要形成一个可以与热和统计波动区分开来的可用信号,需要进行大量这样的电离过程。此外,现有的探测器系列已经非常适合高分辨率跟踪、量热或粒子识别。在本文中,我们讨论了一些量子设备或系统,在这些量子设备或系统中,量子效应发挥了重要作用,以期将它们应用于粒子跟踪、粒子识别或量热领域。我们特别关注那些可能产生目前难以获得的信息的应用,或者现有技术的某些边界条件或
摘要。高能粒子探测器 (HEPD) 模块用于测量地球磁层中捕获的电子和质子通量的倾斜角和能量,能量分别为 3-100 MeV 和 30-300 MeV。由于 CSES-02 卫星的发射,改进 HEPD 的一个有趣选择是为跟踪模块配备 ALPIDE 单片有源像素,该像素是专门为 CERN 的 ALICE 实验的 ITS 升级而开发的。在这项工作中,我们提出了一个模块化紧凑型粒子跟踪器项目,该跟踪器由 5 个转塔组成,利用配备混合集成电路 (HIC) 的 150 像素传感器,并由安装在铝制外壳中的碳纤维增强塑料 (CFRP) 板条支撑。所有设想的解决方案都经过了严格的资格测试,涉及振动和热应力。 HEPD-02 跟踪器项目预示着 CFRP 将大规模应用于科学和探索性质的太空计划。
1美国新罕布什尔大学,美国新罕布什尔州,美国新罕布什尔州03824,美国电子邮件:nschwadron@unh.edu 2美国普林斯顿大学天体物理科学系,新泽西州普林斯顿大学,美国新泽西州08544,美国3加利福尼亚州科技研究所,美国加利福尼亚州Pasadena,美国加利福尼亚州91125年,美国4号大学,美国4号大学。 California at Berkeley, Berkeley, CA 94720, USA 6 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 7 Goddard Space Flight Center, Greenbelt, MD 20771, USA 8 University of Arizona, Tucson, AZ 85721, USA 9 Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, USA 10 BWX Technologies,Inc,Inc,弗吉尼亚州林奇堡,24504,美国11密歇根大学,安阿伯,密歇根州安阿伯市,48109,美国12天文学,天体物理学,空间应用和雅典国家观察员的遥感研究所。Pavlou和I. Metaxa,15236 Penteli,希腊13号特拉华大学,纽瓦克,19716年,美国14 JET PREPULSION LABORATORA,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州91109,美国,
简介:超高能(UHE;≳ 10 16 eV)天体物理中微子具有巨大的发现潜力。它们将探测超高能宇宙射线的加速器,超高能宇宙射线的探测能量最高可达 ∼ 10 20 eV。与在宇宙微波背景上向下散射并在磁场中偏转的宇宙射线不同,探测到的中微子将指向其来源。超高能中微子-核子相互作用探测对撞机能量尺度以上的质心能量,从而可以进行灵敏的新物理测试。为了充分利用超高能中微子的科学潜力,我们最终需要一个具有足够曝光度的天文台,即使在悲观的通量情景下也能收集高统计数据。当超高能中微子在物质中相互作用时,它们会产生相对论性粒子级联,以及由于相对论性粒子能量损失而产生的非相对论性电子和原子核尾迹。冰中的时间积分级联轮廓是一个长度约 10 米、半径约 0.1 米的椭圆体。几乎所有的主要相互作用能量都用于介质的电离。来自单个级联电子和正电子的非相干光学切伦科夫辐射可以在 TeV–PeV 探测器(如 IceCube [1])和类似实验 [2–4] 中探测到。然而,由于中微子谱急剧下降,拟议的后继者 IceCube-Gen2 [5] 的光学探测率太小,不足以成为合适的超高能天文台。已经提出并实施了几种更有效的技术来探测来自超高能中微子的级联。首先,级联中净电荷不对称产生的相干射频辐射(阿斯卡里安效应 [6])已在实验室中观测到 [7],并且是过去 [8]、现在 [9–11] 和拟议 [12, 13] 实验的焦点。由于冰中无线电的透明性 [16–20],无线电方法(详见参考文献 [14, 15])可以比光学探测器更稀疏地测量大体积 [16–20],从而使得大型探测器的建造更具成本效益。其次,τ 中微子与地球相互作用,可以产生 τ 轻子(携带大部分原始 ν τ 能量),该轻子离开地球并在空气中衰变,产生 cas-