月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
简介:超高能(UHE;≳ 10 16 eV)天体物理中微子具有巨大的发现潜力。它们将探测超高能宇宙射线的加速器,超高能宇宙射线的探测能量最高可达 ∼ 10 20 eV。与在宇宙微波背景上向下散射并在磁场中偏转的宇宙射线不同,探测到的中微子将指向其来源。超高能中微子-核子相互作用探测对撞机能量尺度以上的质心能量,从而可以进行灵敏的新物理测试。为了充分利用超高能中微子的科学潜力,我们最终需要一个具有足够曝光度的天文台,即使在悲观的通量情景下也能收集高统计数据。当超高能中微子在物质中相互作用时,它们会产生相对论性粒子级联,以及由于相对论性粒子能量损失而产生的非相对论性电子和原子核尾迹。冰中的时间积分级联轮廓是一个长度约 10 米、半径约 0.1 米的椭圆体。几乎所有的主要相互作用能量都用于介质的电离。来自单个级联电子和正电子的非相干光学切伦科夫辐射可以在 TeV–PeV 探测器(如 IceCube [1])和类似实验 [2–4] 中探测到。然而,由于中微子谱急剧下降,拟议的后继者 IceCube-Gen2 [5] 的光学探测率太小,不足以成为合适的超高能天文台。已经提出并实施了几种更有效的技术来探测来自超高能中微子的级联。首先,级联中净电荷不对称产生的相干射频辐射(阿斯卡里安效应 [6])已在实验室中观测到 [7],并且是过去 [8]、现在 [9–11] 和拟议 [12, 13] 实验的焦点。由于冰中无线电的透明性 [16–20],无线电方法(详见参考文献 [14, 15])可以比光学探测器更稀疏地测量大体积 [16–20],从而使得大型探测器的建造更具成本效益。其次,τ 中微子与地球相互作用,可以产生 τ 轻子(携带大部分原始 ν τ 能量),该轻子离开地球并在空气中衰变,产生 cas-
基于对少量原子的操纵或超低温下产生的量子效应的各种高灵敏度技术的开发,导致了大量量子器件的迅速普及,其中许多现在开始实现商业应用。同时,这些器件依靠从一个量子态到另一个量子态的离散状态变化,具有极高的灵敏度,使它们成为探测假定的超轻粒子或场与量子器件本身之间非常弱的相互作用的理想探测器。这导致它们在低能粒子物理领域得到广泛应用,以及近年来对与轴子、ALP 和许多其他暗物质候选者相关的低能相空间的快速探索(许多评论,包括 [1-4],都涵盖了这些应用)。这种敏感性似乎使这些设备不适合高能物理应用,因为高能物理应用的检测机制主要依赖于通过粒子与物质相互作用的准连续效应来检测和重建单个粒子的属性,将相互作用粒子对探测器主体原子进行多次电离的连续过程所沉积的电荷积分。要形成一个可以与热和统计波动区分开来的可用信号,需要进行大量这样的电离过程。此外,现有的探测器系列已经非常适合高分辨率跟踪、量热或粒子识别。在本文中,我们讨论了一些量子设备或系统,在这些量子设备或系统中,量子效应发挥了重要作用,以期将它们应用于粒子跟踪、粒子识别或量热领域。我们特别关注那些可能产生目前难以获得的信息的应用,或者现有技术的某些边界条件或
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。高能粒子探测器 (HEPD) 模块用于测量地球磁层中捕获的电子和质子通量的倾斜角和能量,能量分别为 3-100 MeV 和 30-300 MeV。由于 CSES-02 卫星的发射,改进 HEPD 的一个有趣选择是为跟踪模块配备 ALPIDE 单片有源像素,该像素是专门为 CERN 的 ALICE 实验的 ITS 升级而开发的。在这项工作中,我们提出了一个模块化紧凑型粒子跟踪器项目,该跟踪器由 5 个转塔组成,利用配备混合集成电路 (HIC) 的 150 像素传感器,并由安装在铝制外壳中的碳纤维增强塑料 (CFRP) 板条支撑。所有设想的解决方案都经过了严格的资格测试,涉及振动和热应力。 HEPD-02 跟踪器项目预示着 CFRP 将大规模应用于科学和探索性质的太空计划。
我们的能力 7 量子技术. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 高能粒子和核物理. . . . . . . . . . . . . . . . . . . . . . . . . 11 计算科学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ...
摘要:静态随机存取存储器(SRAM)器件作为重要的星载电子设备,在其执行空间任务过程中不可避免地受到空间高能粒子辐照的影响。为揭示高能粒子对28nm工艺SRAM造成单粒子效应(SEE)的机理,基于针孔重离子微束装置,对单粒子翻转(SEU)敏感区定位和多单元翻转(MCU)分布特性进行了研究。结果表明:微束辐照引起的SEU实际范围为4.8μm×7.8μm。通过小步长(每步1μm)移动设备台,建立了SEU敏感区的一维定位方法,可以降低定位精度对束斑尺寸的依赖,定位精度可提高到1μm。 MCU测试表明,翻转模式与相邻SRAM单元内敏感区域的间距密切相关,并且通过阱接触和位交错可以降低MCU的概率。
中高能粒子传感器、单粒子翻转传感器、地磁场监测仪(FGM)、卫星表面带电电位监测仪、空间辐射环境监测仪、全球导航掩星探测器(GNOS)、电离层光度计(IPM)、广角极光成像仪(WAI)、太阳X-EUV成像仪
近年来,晶体管技术的进步使得人们能够设计出越来越复杂的集成电路。随着在降低功耗和提高性能方面取得的巨大成就,在考虑深度扩展技术时也面临着新的挑战。明显的工艺变异性、老化和辐射效应是经常出现的设计挑战,其重要性也日益增加 [1-5]。集成电路越来越容易受到单个高能粒子撞击的影响,可能会产生破坏性或非破坏性的影响。当粒子撞击触发 CMOS 电路中固有的 PNPN 结构中的寄生晶体管时,就会发生单粒子闩锁 (SEL),这可能会产生破坏性影响 [6]。当高能粒子从顺序逻辑元件撞击晶体管的敏感区域并沉积足够的电荷以扰乱电路时,单粒子翻转 (SEU) 会以位翻转的形式出现。此外,组合逻辑电路容易受到单粒子瞬态 (SET) 效应的影响,这种效应表现为粒子与处于关断状态的晶体管漏极电极相互作用产生的寄生瞬态电流。这并不是单粒子效应 (SEE) 的详尽列表 [7]。辐射加固设计 (RHBD) 技术已经开发出来,用于应对不同辐射条件下电子电路的辐射效应
物理学研究宇宙,从最小到最大尺度:它揭示宇宙的复杂性,发现宇宙的本质和运作方式。物理学的发现为无数技术进步奠定了基础,并在许多科学领域发挥着重要作用。医学成像、纳米技术和量子计算中使用的许多技术都源自物理仪器。甚至万维网也是高能粒子物理学信息处理和通信要求的副产品。物理学对解决能源生产、环境保护、全球变暖和公共卫生等全球问题的贡献至关重要,对我们的社会产生了巨大影响。