Caron-Huot 博士的兴趣在于高能粒子理论,这是物理学的一个分支,研究构成物质和辐射的粒子的性质。特别是,通过研究量子色动力学中的散射振幅,他旨在开发新的壳层技术来简化和实现新的计算。他还对 N=4 超级杨-米尔斯模型感兴趣,该模型可能成为第一个精确解决的四维场论。他开发的技术利用一般原理(相对论和量子力学)的惊人力量,将困难的定量计算分解为更简单的构建块。
摘要 我们概述了目前国际空间站 (ISS) 上两个最重要的辐射探测系统 ISS-RAD 和 Timepix。ISS-RAD 是一个单一的大型装置,能够探测带电和中性高能粒子。在空间站运行的前三年半中,ISS-RAD 大部分时间都定期转移到不同的模块,包括 USLab、Columbus、JEM、Node2 和 Node3。相比之下,基于 Timepix 的探测器小得多,部署在空间站周围的多个位置。这些装置的第一代称为 REM,即辐射环境监测器。第二代装置最近已部署,称为 REM-2 装置。我们将简要介绍这些系统中使用的技术及其功能。
卫星、发射器、飞机和汽车等平台的电子系统经常处于恶劣环境中,这些环境可能导致信息流出现错误,组件出现故障。例如,太空中的高能粒子会导致太空电子设备出现错误和故障。随着计算使用的急剧增加,即使是地面上的电子系统也会受到影响。数字和电力电子设备都会受到影响,在后者的情况下,辐射可能是破坏性的。对于太空、航空电子或汽车应用,对安全关键功能的平均要求是 109 小时内出现 1-10 次故障。答案是为这些电子系统开发优化的缓解措施,以成功提高可靠性,应对日益严重的所谓软、固和硬错误问题。
虽然首次提出模拟自然界量子力学的建议可以追溯到理查德·费曼 [1],但最近将量子信息理论应用于高能物理系统研究的尝试已证明特别成功。量子态断层扫描就是一个典型的例子,该过程通过对被观察系统的相同副本集合进行一系列互补测量,可以完全重建系统的密度矩阵 [2],非常适用于产生大量事件的对撞机 [3-6],并且已应用于各种高能粒子物理系统的数值模拟研究 [4-7]。包括量子机器学习技术在内的量子算法已被开发用于识别数据中的标准模型及以上特征 [8-10],以及以更经济的计算方式模拟对撞机事件 [11]。
电子设备的尺寸正在接近原子大小,这迫使人们制定新的指导方针来应对 22 纳米以下设计的挑战。随着芯片制造深入纳米领域,工艺变异缓解和辐射硬度成为相关的可靠性要求。受工艺变异影响的集成电路可能无法满足某些性能或功率标准,从而导致参数产量损失并需要重新设计几个步骤 [1]。传统上,软错误 (SE) 是由来自太空或地面辐射的高能粒子与硅之间的相互作用引起的 [2]。然而,技术缩放引入了电荷共享现象和脉冲猝灭 [3]。此外,工艺变异会改变线性能量传输 (LET),从而引发软错误。其后果是暂时的数据丢失,甚至在地面层面也会导致系统行为出现严重故障。
辐射。尽管如此,大多数人并不知道这是我们环境的自然组成部分。当我们的星球形成时,辐射就存在了——现在辐射仍然围绕着它。天然辐射从遥远的宇宙中倾泻而下,并不断从地球上的岩石、土壤和水中辐射出来。在上个世纪,人类发现了辐射、如何使用它以及如何控制它。结果,一些人造辐射被添加到我们环境中的自然量中。我们在日常生活中接触的许多物质——无论是天然的还是人造的——都是放射性的。这些物质由原子组成,当它们变成更稳定的形式时,会释放出高能粒子或波。这些粒子和波被称为辐射,它们的发射被称为放射性。这张公众接触电离辐射的图表显示,人们通常每年接受的总剂量约为 620 毫雷姆。在这总量中,天然辐射源约占 50%,而人造辐射源占剩余的 50%。
量子断层扫描已成为计算物理学中量子系统密度矩阵 ρ 的必不可少的工具。最近,它作为测试高能粒子物理学中纠缠和违反贝尔不等式的基本步骤,变得越来越重要。在这项工作中,我们提出了重建一般散射过程的螺旋量子初始状态的理论框架。具体而言,我们对不可约张量算子 f TLM g 执行 ρ 的展开,并通过在适当选择的 Wigner D 矩阵权重下对最终粒子的角度分布数据进行平均来唯一计算相应的系数。此外,我们还提供了生产矩阵 Γ 的新广义和散射的归一化微分截面的显式角度依赖性。最后,我们使用 Weyl-Wigner-Moyal 形式从量子信息的角度重新推导了我们之前的所有结果,此外,我们还获得了 Wigner P 和 Q 符号的简单解析表达式。
摘要 光束动力推进是一种利用高能粒子束驱动航天器的空间推进系统。这项创新技术有望为未来的太空任务提供高比冲和高推力能力。光束动力推进的关键部件包括粒子加速器、传动系统和航天器推进装置。该系统通过产生和引导高能粒子束(例如电子或离子)朝向推进装置来运行。光束与推进装置的相互作用产生推力,推动航天器前进。光束动力推进具有多种优势,包括高比冲、高推力、低质量以及在各种空间环境中运行的能力。空间技术的快速进步提高了商业和私营部门的成功率,但推进技术难以克服霍曼效应。研究重点是用于深空任务的无碳电力和核技术。应对持续的挑战评论文章强调了太空探索和行星际运输的好处。关键词:光束动力推进、高能粒子、比冲、推力、粒子加速器、传动系统、航天器推进装置。