• 美国陆军,以数据科学为驱动的动态预期标准,以加速粘合装甲高负载率粘合剂的创新和转型,该团队致力于开发国防部第一个动态标准,采用嵌入式数据科学和可更新的军事技术驱动因素作为装甲粘合剂的资格指南。MIL-STD-3059 通过促进粘合装甲组件的复杂弹道响应与普遍可翻译和商业相关的准静态机械性能之间的数据驱动相关性,重新定义了传统观点。这种颠覆性方法将产品资格认证的时间和成本障碍减少了三分之二,并激励了高风险和高回报的创新。团队成员包括 Gerard T. Chaney、Daniel C. Deschepper、David P. Flanagan、Robert E. Jensen 和 Charles G. Pergantis。
Link-easy Aerospace 的 SBN 系列分离螺母是一种非常简单有效的压紧和释放机构,由镍钛诺形状记忆合金 (SMA) 丝驱动。分离螺母既具有高负载能力(1~20KN),又具有快速驱动时间(~50ms)。我们的分离螺母使用带有冗余 SMA 丝的分段螺母作为触发器。SMA 触发器可实现快速响应,并且释放冲击很小。设备中内置冗余开关,当分离螺母释放或装备时发出“开”或“关”信号,从而简化地面操作和飞行任务要求。分离螺母集成了旋转机构,使其能够在安装外壳内旋转高达 ± 2 °,从而保证较大的角度错位公差。分离螺母配备两个机械接口:标准顶部安装 (SBN-STD) 和底部安装 (SBN-BM)。
串扰现象是由于 2 条线路之间的耦合造成的。耦合系数(β 12 或 β 21 )随着线间距减小而增大,尤其是在硅片中。在上面的例子中,负载 R L2 上的预期信号为 α 2 V G2 ,实际上此时的实际电压有一个额外的值 β 21 V G1 。V G1 信号的这一部分表示线路 1 的串扰现象对线路 2 的影响。当驱动器在干扰线路中施加快速数字数据或高频模拟信号时,必须考虑这种现象。如果受扰线路采用低压信号或高负载阻抗(几 k Ω ),则受扰线路将受到更大的影响。
由于纳米粒子具有高比表面积和高表面活性,因此被广泛应用于不同的生物医学应用。7 纳米级载体由于其高稳定性、简便的化学功能、高效的细胞内化和高负载能力,在药物输送方面具有极大的吸引力。8 最近,人们还考虑开发具有不同表面化学和新颖能力的智能多功能纳米平台。9 在此背景下,利用靶向剂(尤其是抗体和适体)进行表面功能化,已被广泛用于高效、特异性地靶向递送纳米载体。10 用于同时诊断和治疗疾病的治疗诊断纳米平台的设计和开发是纳米技术的另一项杰出成就。11
近年来,电气性从根本上改变了汽车行业,并提出了许多技术挑战,包括对更高动力总成效率的需求不断增长。在整个传动系统中的摩擦电阻,例如电动机,还原齿轮盒和差速器,以优化车辆的性能和驾驶范围。高性能聚合物在摩擦学传动系统组合中发挥了不断增强的作用,在各种应用中,变速箱的高性能,耐用性和效率。本文将仔细研究两个苛刻的应用:在传输中,摩擦学优化的推力垫圈和水力推进系统中的高性能密封件。dupont开发了一种新颖的材料,甚至可以承受最具挑战性的摩擦学条件,例如高负载和极高速度的结合。
在本论文中,研究了一个新的Ballbot Rezero的球结构,其负载能力高达100 kg。此外,需要低重量和良好的形式稳定性,以实现轻松的球。还应在地面上提供足够的摩擦,以避免滑动和阻尼特性,以使像地毯边缘这样的小凹凸被吸收。在功能分析的帮助下,发现了一个新的球版本,该版本由内部形式稳定的空心球和外部摩擦提供涂层组成。通过使用聚酰胺-12(PA-12)对内部和聚氨酯(PU)进行外部部分,得出上述规格来实现此结构。这种具有高负载能力的新球结构为使用REZERO用于运输目的的基础奠定了基础。
摘要 - 在本文中,我们提出了一种新的基于神经网络的方法,以控制燃气轮机以在高负载下进行稳定操作。我们使用了复发性神经网络(RNN)和增强学习(RL)的组合。我们首先使用RNN来确定燃气轮机动力学的最小状态空间。基于此,我们通过标准RL方法确定最佳控制策略。我们进入一个所谓的复发控制神经网络(RCNN),该网络将这两个步骤结合到一个集成的神经网络中。我们的方法具有一个优势,即通过使用神经网络,我们可以轻松地处理燃气轮机的高尺寸,并且由于RNN的高系统认同质量与一般而言,通常只有有限的可用数据。我们在示例性的燃气轮机模型上演示了所提出的方法,与标准控制器相比,它强烈改善了性能。
问题:尽管几乎没有足够的移动空间,但您仍然必须施加相当大的扭矩才能松开顽固的螺钉。后果:许多可用的套筒都是无用的,因为它们的壁厚使它们在尴尬的地方不实用。解决方案:STAHLWILLE HPQ* 套筒由精选的坚韧钢合金制成。这些套筒不会从螺钉头上滑落,也不会在承受重载时拉伸。它们极薄的壁和令人难以置信的高负载能力简直是典范。HPQ 套筒不含镉,因此适用于钛合金零件和钛紧固件,例如在航空航天工业中使用的零件和紧固件,其中安全是至关重要的因素。它们符合以下航空航天标准:E DIN EN 3709、E DIN EN 3710、SAE AS 954-E、S.B.A.C. AS 40605/40606、MS-33787、MIL-W-8982。
1 Cleca是一个遍布全州的大型高负载因子工业客户的组织;成员在水泥,钢,工业天然气,管道,饮料,冷藏,食品包装和矿业行业中,并分享了电力成本包括其生产成本的很大一部分。有些成员是捆绑的客户,其他成员是直接访问(DA)客户,有些是由社区选择聚合商(CCAS)提供服务的;一些成员有可再生能源的一代。Cleca自1980年代中期以来一直是委员会监管程序的积极参与者,所有Cleca成员都参与了需求响应(DR)计划,以促进网格可靠性并有助于减轻加利福尼亚州高电力成本对制造竞争力的影响。Cleca成员自1980年代初以来就参加了基本中断计划(BIP)及其前身中断和非公司的计划。
瑞典间歇性力量的主要来源是风和太阳辐照度。它们的规划性是由天气变化引起的,这是电网变异性增加的一部分。随着瑞典这些来源的使用增加,有关储能的问题成为有关安全可靠的电网的辩论中的重要组成部分[4]。此外,瑞典的核淘汰,加上间歇性能源的扩展使瑞典的电力产量越来越不可预测。由于大多数生产所在的北部的传输能力有限,瑞典南部的电力短缺风险增加,也导致不确定性[5]。在瑞典,由于电加热,冬季的功耗峰值很高,随着消耗量的增加,电网的应变增加[6]。高负载峰的时间段和网格的容量短缺,结合间歇性能量产生,需要调节功率调节。在解决这个日益紧急问题的解决方案中的关键作用可能是储能系统[7]。