摘要:高能量容量的锂硫电池是先进储能领域的有希望的候选材料。然而,它们的应用受到可溶性多硫化物的穿梭和缓慢的转化动力学的阻碍,倍率性能差,循环寿命短。在此,单原子材料被设计用来加速锂硫电池的多硫化物转化。结构中的氮位点不仅可以锚定多硫化物以减轻穿梭效应,而且还可以实现单原子铁的高负载。密度泛函理论计算表明,单原子位点降低了电化学反应的能垒,从而提高了电池的倍率和循环性能。纽扣电池表现出令人印象深刻的能量存储性能,包括0.1 C 时1379 mAh g −1 的高可逆容量和5 C 时704 mAh g −1 的高倍率容量。电解质剂量/能量密度之比低至5.5 g Ah 1 −。它表现出优异的循环性能,即使在 0.2 C 下循环 200 次后容量保持率仍可达 90%。关键词:单原子材料、锂硫电池、快速多硫化物动力学、贫电解质、长循环寿命
摘要 - 该项目的主要目的是开发一个系统,以连续为电动汽车电池充电并控制三个相网系统。使用扰动和观察方法用于从太阳PV阵列中获取最大功率。电动汽车电池在直流链路处的双向转换器连接,直流链路也连接到电压源转换器,该电动汽车电池在低负载需求下会充电并在高负载需求下排放。此转换器通常通过此电池电池在DC链路处保持最大功率,可以通过拿到低额定电池来存储额外的电源来充电。使用网格连接的太阳能PV电池电池系统以更好的方式使用自适应递归数字过滤器。当太阳能消失发生变化并更改负载需求时,具有递归过滤器控制的系统是可控制的。VSC在没有太阳能发电的情况下没有任何干扰,并将反应性转移到网格中,而无需任何干扰。该项目是在MATLAB中的仿真的帮助下完成的,并且在稳态条件和动态条件下都可以完成硬件原型的测试结果。
更广泛的背景 近年来,水系金属离子电池因其低成本和安全性而备受关注。其中,锌离子电池一直是研究的主要焦点。然而,铁比锌更便宜,在地壳中的储量也更丰富,有望成为替代金属阳极,尽管它仍未得到充分开发。可靠的铁离子电池正极对于推进其研究和商业化至关重要,这需要简单的制备工艺和易于理解的机制。在此,我们介绍了使用聚苯胺作为铁离子电池活性材料的夹层型和圆柱形正极。该正极不含粘合剂,通过简单的低压压制工艺制造而成。它在 5C 倍率下可提供 225 mA hg 1 的高容量(而聚苯胺的理论容量为 300 mA hg 1)。此外,我们的高负载电池在 15C 倍率下表现出 27000 次循环的长循环寿命和 82% 的容量保持率。我们还进行了系统的理论研究,阐明了在充电和放电过程中铁离子与聚苯胺结合后的电化学行为。因此,这项工作为在固定储能应用中使用铁离子电池提供了一种可靠且有前景的解决方案,其性能可能优于铅酸电池和锂离子电池。
核黄素-5-磷酸 (RF) 是角膜交联 (CXL) 中最常用的光敏剂,但其亲水性和负电荷限制了其穿透角膜上皮进入基质。为了增强 RF 对角膜的通透性并提高其在圆锥角膜治疗中的疗效,以 ZIF-8 纳米材料为载体制备了新型芙蓉状 RF@ZIF-8 微球复合材料 [6RF@ZIF-8 NF (纳米片)],其特点是疏水性、正电位、生物相容性、高负载能力和大表面积。苏木精和伊红内皮染色和 TUNEL 分析均证明 6RF@ZIF-8 NF 具有良好的生物相容性。在体内研究中,6RF@ZIF-8 NF 表现出优异的角膜渗透性和出色的跨上皮 CXL (TE-CXL) 功效,略优于传统 CXL 方案。此外,6RF@ZIF-8 NF 的特殊芙蓉状结构意味着它比 6RF@ZIF-8 NP(纳米颗粒)具有更好的 TE-CXL 功效,因为与上皮的接触面积更大,RF 释放通道更短。这些结果表明 6RF@ZIF-8 NF 有望用于跨上皮角膜交联,避免上皮清创的需要。
能够靶向并在肿瘤微环境 (TME) 中积累的聚合物纳米级材料为更安全地递送抗癌药物提供了有希望的途径。通过在大量药物释放之前到达目标,此类材料可以减少脱靶副作用并最大限度地提高 TME 中的药物浓度。然而,较差的药物负载能力和纳米材料对肿瘤的渗透效率低会限制其治疗效果。在此,我们提供了一种新方法,可实现高负载曲线,同时确保药物快速有效地渗透到肿瘤中。这是通过将光敏紫杉醇与对肿瘤相关酶有反应的单体共聚,并将所得的二嵌段共聚物组装成球形胶束来实现的。虽然光照使紫杉醇能够从聚合物骨架中解耦成光激活胶束,但 TME 中的酶消化会引发其爆发释放。通过一系列体外细胞毒性试验,我们证明这些光开关胶束比共价连接的非触发胶束具有更大的效力,并且具有与游离药物相当的治疗特性。
本研究对一种新型电池系统进行了全面的分析,该系统首次将由锂镍锰铝氧化物 (LiNi 0.9 Mn 0.05 Al 0.05 O 2 , NMA) 组成的高负载 (~5 mAh/cm 2 ) 无钴阴极集成到全固态电池中。银锗石 (Li 6 PS 5 Cl) 固体电解质与 99 wt% 硅薄膜阳极配合使用。在 0.05C 和 0.25C 的循环速率下,室温放电容量分别达到 > 210 mAh/g NMA 和 > 170 mAh/g NMA。在第一个循环期间进行的电化学阻抗谱测量详细说明了电解质降解的开始、硅阳极的锂化以及电荷转移动力学随电池电压的变化。拉曼光谱、傅立叶变换红外光谱和 X 射线光电子能谱用于识别循环过程中阴极电解液中形成的银锑矿降解产物,揭示碳酸锂是文献中经常提到的与氧气相关的降解的潜在来源。此外,制造过程中电池堆压力高(350 MPa),导致一些阴极颗粒破裂和粉碎。
我们提出了Dauth,这是一种蜂窝网络中设备身份验证的方法,它重构了Au-thentical的职责,可以使多个小型的私人蜂窝网络共同融合在一起,以提供比自己可以实现的更可靠和更弹性的服务。Dauth设计为与现成的4G和5G蜂窝设备兼容的后区,今天可以逐步部署。它使用加密的秘密共享以及与备份网络一起存储的敏感数据与非敏感公共目录数据之间的关注点,以在不同和不信任组织之间使用多种冗余节点进行安全扩展身份验证。具体来说,它允许在没有家庭网络的情况下代表其家庭网络收集预配置的备份网络,以代表其家庭网络。我们通过活跃的联邦社区网络的生产设备评估了Dauth的性能,发现它能够与现有系统一起使用。我们使用模拟的5G运行进行评估,发现它的性能与低负载下的基于云的独立5G核心相当,并且由于其先天负载共享属性而在高负载下优于集中式核心。
提高充电电压并采用高容量的阴极(如锂钴氧化物(LCO))是扩大电池容量的有效策略。高压将揭示主要问题,例如电解质的低界面稳定性和弱电化学稳定性。从物质基因工程设计的角度设计高性能固体电解质至关重要。在这种情况下,构建了稳定的SEI和CEI界面层,并通过聚合物分子工程产生了4.7 V高压固体共聚物电解质(PAFP)。As a result, PAFP has an exceptionally broad electrochemical window (5.5 V), a high Li + transference number (0.71), and an ultrahigh ionic conductivity (1.2 mS cm − 2 ) at 25 ° C. Furthermore, the Li||Li symmetric cell possesses excellent interface stability and 2000 stable cycles at 1 mA cm − 2 .LCO | PAFP | LI电池在1200个周期后具有73.7%的保留能力。此外,它在高充电电压为4.7 V时仍然具有出色的循环稳定性。上面的这些特性还允许PAFP在高负载下稳定运行,显示出极好的电化学稳定性。此外,提出的PAFP提供了对高压抗性固体聚合物电解质的新见解。
当前,Artemis 计划迫切需要一种多功能、高负载、长距离的操作系统,以便为月球着陆器提供有效载荷的卸载和处理。轻型表面操作系统 (LSMS) 是一种结构高效、长距离的机械臂,可适应多种任务和有效载荷范围。LSMS 在美国宇航局兰利研究中心 (LaRC) 已有十多年的历史和测试,包括多种末端执行器工具和操作场景的实验室和现场测试。由于需要快速开发经过飞行验证的卸载能力,并希望该设备可在未来的任务和服务中重复使用,美国宇航局的空间技术任务理事会今年启动了一项为期 4 年的项目,以开发和建造 LSMS 的原型飞行装置,该装置能够在月球上以 8 米的举升范围举起 1,000 公斤的重物。目标任务是作为技术演示器在大型货运着陆器上飞行,以验证自动调平、部署和有效载荷处理操作,未来的飞行将增加额外的工具和能力。本文总结了过去十年的 LSMS 工作、当前任务驱动因素和目标,并详细介绍了 LSMS 向原型飞行单元发展的第一年。
摘要:锂硫电池具有较高的理论容量和能量密度,被认为是最有前途的下一代储能系统之一。然而,锂硫电池中的穿梭效应导致硫利用率低、循环性能差、倍率性能差等问题,近年来引起了大量研究者的关注。其中,对多硫化锂(LPS)具有高效催化功能的催化剂可以有效抑制穿梭效应。本文概述了近年来锂硫电池催化剂材料的进展。根据已报道的催化剂的结构和性能,将已报道的LPS催化剂材料的发展分为三代。可以发现,高效催化材料的设计不仅需要考虑对多硫化物的强化学吸附,还需要考虑良好的导电性、催化性和传质性。最后,对高性能锂硫电池催化剂材料的合理设计进行了展望。具有高电导率、同时具有亲脂和亲硫位点的催化材料将成为下一代催化材料,例如异质单原子催化、异金属碳化物等,这些催化材料的发展将有助于更高效地催化LPS,改善反应动力学,为锂硫电池高负载或快速充放电提供保障,促进锂硫电池的实际应用。