Terahertz(THZ)技术已成为下一代无线通信和广泛应用的令人兴奋的边界。THZ频段的空前带宽允许超高的数据速率,在无线虚拟现实,高清多媒体流媒体,高保真移动全息图和无线芯片芯片通信方面开辟了令人兴奋的机会。但是,部署THZ系统提出了重大的网络和安全挑战,必须应对这些挑战,以充分实现该技术的潜力。本文全面分析了THZ通信的关联网络和安全问题,这些网络和安全问题是根据2014年至2024年之间发表的相关文献。信号传播和路径丢失,光束跟踪和对齐方式以及有效的网络体系结构和干扰管理技术的设计是解决的一些关键网络挑战。在安全性方面,本文着眼于物理层安全性,窃听和阻塞威胁,以及针对启用THZ的设备的硬件安全性和可信赖的计算注意事项。分析强调了THZ信号的独特特征,例如它们的高方向性,对分子吸收和阻塞的敏感性以及独特的传播行为,这既带来了网络和安全的机会和挑战。创新的解决方案和鲁棒的安全机制,例如指导调制,基于波束的安全性,安全的钥匙分配协议和基于硬件的证明技术,以解决这些挑战的潜在方法,从而帮助并指导未来的研究工作。
• North-South Interconnector - ECD 2027 • Mid Antrim Reinforcement in Part 2 of Grid Development Process, stakeholder engagement ongoing, ECD 2029 • Omagh – Dromore Uprate completed • Drumnakelly – Tamnamore Uprate TNPP submitted, ECD 2028 • Moyle Reinforcement TNPP draft determination received, ECD 2027 • Cam substation extension TNPP submission shortly, ECD 2029 • North and West Reinforcement options report commencing shortly, ECD 2030 at earliest • North Sperrin Generation Substation Optioneering commencing • Mid Tyrone Reinforcement TNPP submission in April, ECD 2030 at earliest • Larne transformer uprate – project approved , detailed design underway ECD 2026 • Coolkeeragh – Strabane uprate – optioneering underway • Limavady and Coleraine变压器升级 - 正在进行的选择
第 1 节介绍了该项目的历史并解释了联邦参与的必要性。第 2 节描述了用于审查 Transrapid 系统的安全评估方法。第 3 节详细介绍了当前的 Transrapid 技术。第 4 节列出了迄今为止发现的潜在磁悬浮安全问题。第 5 节回顾了已发现安全问题的风险评估。第 6 节提出了已发现危险的解决方案,包括需要制定修改或新联邦法规的领域列表。第 7 节介绍了本次审查的结论并就潜在的规则制定行动提出了建议。
摘要 — 本文报告了从快速机载平台到地面站的高速率自由空间光通信下行链路的演示。所用的飞行平台是 Panavia Tornado,激光通信终端安装在附加的航空电子演示吊舱中。配备自由空间接收器前端的可移动光学地面站用作接收站。选择的通信下行链路波长和信标激光的上行链路波长与 C 波段 DWDM 网格兼容。开发了新的光机跟踪系统,并将其应用于两侧,以实现链路捕获和稳定。飞行测试于 2013 年 11 月底在德国曼奇的空中客车防务与航天公司附近进行。该活动成功展示了数据速率为 1.25 Gbit/s 的飞机下行链路激光通信的成熟度和准备就绪性。我们根据链路预算评估、开发的光机终端技术和飞行活动的结果概述了实验设计。试验本身侧重于机载终端和地面站的跟踪性能。可在飞机速度高达 0.7 马赫时测量性能,并传输来自机载摄像机的视频数据。在瞬时跟踪误差分别低于 60 μ rad 和 40 μ rad 时,机载终端和地面站的跟踪精度高达 20 μ rad rms。
Matthew R. Fulghum 的论文经过以下人员的审阅和批准*:机械工程学教授 Gary S. Settles 论文顾问 委员会主席机械工程与数学杰出教授 Asok Ray 机械工程学教授 John M. Cimbala 机械工程学教授 Philip J. Morris Boeing/A. D. Welliver 航空航天工程学教授 Daniel C. Haworth 机械工程学教授 MNE 研究生项目主管教授 * 签名已存档于研究生院。
根据其章程,AGARD 的使命是将北约国家在航空航天科学技术领域的领军人物聚集在一起,以实现以下目的: - 为成员国推荐有效的方式,以便利用其研究和开发能力造福北约社区; - 向军事委员会提供航空航天研究和开发领域的科学和技术建议和援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学和技术信息; - 向成员国提供援助,以提高其科学和技术潜力; - 根据要求,向其他北约机构和成员国提供与航空航天领域研究和开发问题有关的科学和技术援助。
对现有旋转编织机的评估得出结论,所有旋转编织机的性能都受到其所采用的一个或多个概念的限制。没有一种设计能够优化旋转编织概念的一个或两个以上的方面。通过确保旋转编织概念的所有主要领域都得到一致优化,可以提高整体机器性能。设计优化分为两个部分。——第一部分是线材(产品)行为的理论和实验研究。这允许设计一种引导线材的“棒”机制,以补充线材控制标准。外部线材的控制是旋转编织机性能的基础。
预计将在现有宙斯盾作战系统架构的基础上,变得更加复杂,但仍是一个集成度高、可轻松操作的作战系统。基于 FDDI(光纤分布式数据网络)的高速网络可以满足对更多带宽的需求,集成船上的实时和其他通信服务。本文支持以下观点:FDDI 不仅可以成功取代舰船作战系统中的现有通信,还可以提供增强的操作水平,
摘要:转子的稳定悬浮是磁悬浮控制动量陀螺仪的重要要求之一,陀螺效应是转子的一个显著特性。为研究转子结构与陀螺效应之间的关系,引入惯性比的概念,研究惯性比与陀螺效应之间的关系。为提高转子的悬浮稳定性,在建立转子悬浮系统模型的基础上,研究了交叉反馈控制(CFC)方法,指出转子在旋转作用下,仅采用分布式PID控制无法使转子悬浮稳定。为更有效的抑制陀螺效应并在更宽的转速范围内维持稳定悬浮,提出了一种带预调增益的CFC方法。研究结果验证了所提出的CFC方法能有效抑制陀螺效应引起的转子振动。试验结果还表明,较大的惯性比有利于抑制转子陀螺效应,并能在一定程度上提高悬浮稳定性。此外,通过优化惯性比,设计了MSCMG转子,角动量为200 Nms。本文对高速转子的机械设计和稳定悬浮研究具有重要的指导意义。
摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。