可扩展的光子量子计算架构对光子处理设备提出了严格的要求。对低损耗高速可重构电路和近乎确定性的资源状态生成器的需求是最具挑战性的要求之一。在这里,我们开发了一个基于薄膜铌酸锂的集成光子平台,并将其与基于纳米光子波导中量子点的确定性固态单光子源接口。生成的光子由可编程速度为几千兆赫的低损耗电路处理。我们利用高速电路实现了各种关键的光子量子信息处理功能,包括片上量子干涉、光子解复用和四模通用光子电路的可重编程性。这些结果为可扩展光子量子技术指明了一条有希望的未来道路,即通过以异构方式将集成光子学与固态确定性光子源相结合来实现扩展。
速度更快的 PCB 设计本质上更加复杂和精细。在更高的时钟速度下,PCB 需要更清晰的信号传输,而不会损害系统的稳定性。这正是信号完整性工程发挥作用的地方。简而言之,信号完整性研究高速电路的设计,以适应通过它们的更清晰的信号。反过来,更清晰的信号使 Elma Bustronic 的工程师能够识别和最小化数据传输中的失真源,否则可能会破坏数字逻辑的时序。信号完整性问题(例如反射、串扰、频率相关传输线损耗和色散)会严重导致通过互连传播的系统性能下降。这些 SI 问题源于通孔、电源/接地耦合、信号线中的 RLC 效应等。由于背板及更高层的信号速度为 3.125 Gbps 至 6.250 Gbps,AdvancedTCA 背板很容易受到此类问题的影响。请联系 Elma Bustronic,电话 (510) 490-7388 或 techsupport@elmabustronic.com,了解有关我们的 SI 服务如何确保最佳背板性能的问题。
在设计印刷电路板 (PCB) 时,使用自动布线器很诱人。通常情况下,纯数字电路板(特别是当信号相对较慢且电路密度较低时)就可以正常工作。但是,当您尝试使用布局软件提供的自动布线工具来布局模拟、混合信号或高速电路时,可能会出现一些问题。产生严重电路性能问题的可能性非常大。例如,图 1 显示了两层电路板的自动布线顶层。该电路板的底层如图 2 所示,这些布局层的电路图如图 3a 和图 3b 所示。对于此混合信号电路的布局,设备是手动放置在电路板上的,并仔细考虑了数字和模拟设备的分离。这种布局有几个值得关注的地方,但最麻烦的问题是接地策略。如果在顶层遵循接地迹线,则每个设备都通过该层上的迹线连接。每个设备的第二个接地连接都使用底层,过孔位于电路板最右侧。在检查这种布局策略时,应该立即看到的危险信号是存在多个接地环路。此外,底部的接地返回路径被水平信号线中断。这种接地方案的优点是模拟设备(MCP3202,12 位 A/D 转换器和 MCP4125,2.5V 电压基准)位于电路板最右侧。这种放置可确保数字接地信号不会从这些模拟芯片下方通过。
课程描述:高速低功耗设计中的串扰、失真、延迟、衰减、地面反弹、趋肤效应、抖动、符号间干扰的基础知识。建模/仿真:高速互连、封装、接地/电源平面、通孔、PCB 和 3D-IC;眼图、Elmore 延迟、有损耦合、传输线、电报方程、线路参数提取、测量参数。宏建模:无源性/因果关系、特征法、矩阵有理近似、矢量拟合、模型降阶、电磁兼容性/干扰、混合域系统和基于多物理的并发分析。先决条件:就读卡尔顿大学电子/SCE 系或 OCIECE 的研究生课程或经系批准。讲座:每周三小时 VLSI 电路技术的快速发展,加上复杂/微型设备的趋势,对专注于微电子的计算机辅助设计 (CAD) 工具提出了巨大的需求。设计要求变得非常严格,要求更高的运行速度、更尖锐的激励、更密集的布局和低功耗。因此,延迟、衰减、串扰、地弹等信号完整性问题正在成为高速电路和系统设计和验证的主要瓶颈。如果在设计阶段没有正确处理高速效应,可能会导致逻辑故障,导致制造的数字电路无法运行,或者扭曲模拟信号,使其无法满足规格。由于 VLSI 设计周期中的额外迭代成本极高,因此准确预测这些影响是高速设计中的必需品。设计和 CAD 社区目前正在发生范式转变,以适应高速设计问题的新要求。然而,目前可用的 CAD 工具和设计策略无法充分处理涵盖不同领域的复杂高速电路设计/分析场景。本课程旨在涵盖高速设计、对根本原因的理解、相关物理和高速互连建模/仿真/设计方法。讲师: