基于光束中经典和量子相关性的技术(如鬼成像)使我们能够克服传统成像和传感协议的许多局限性。尽管这些技术有诸多优势,但它们的应用往往受限于目标物体的位置和纵向延伸未知的实际场景。在本文中,我们提出并通过实验证明了一种名为光场鬼成像的成像技术,该技术利用光相关性和光场成像原理,能够在广泛的应用中超越鬼成像的局限性。值得注意的是,我们的技术消除了对物体距离的先验知识的要求,从而可以在后处理中重新聚焦,并可以在保留鬼成像协议的所有优点的同时执行三维成像。
我们使用数值模拟来演示与 Cs 校正 STEM 成像相当的分辨率,方法是使用调制器在未校正的仪器上执行 CGI(图1b-g)。我们模拟了 MoS 2 扭曲双层的 CGI 实验(图1b),其中两个 MoS 2 单层以 7° 角堆叠在一起。这样的样本提供了几乎连续的原子间距离范围,并且已被证明可用于估计成像技术的分辨率 [37]。我们假设一台 300 kV 显微镜,其 Cs = 2.7mm,在 Scherzer 条件下,需要使用小孔径(𝛼= 7.3 𝑚𝑟𝑎𝑑 ),将分辨率限制为 1.63 Å,如图所示。1d。相反,CGI 允许使用更大的数值孔径,从而实现更高的分辨率。在图中。1f-g 我们展示了使用 2𝛼 会聚半角计算的 CGI 重建,尽管存在像差,但仍提供 0.64 Å 的分辨率。该值与具有相同半会聚角的无像差成像系统的分辨率相当。事实上,只要能够预测照明模式,就可以使用任意大的半会聚角。准确的探测预测对于未来的实验实现至关重要,如补充材料 [38] 中所述。一个限制因素是相干性 [38],其阻尼包络定义了传输到结构化照明的最高频率 [39,40]。
脑机接口为增强人类能力提供了一系列新的可能性和途径。在此,我们提出脑机接口是实现计算形式(即计算成像)的一种途径,将大脑与外部硅处理相结合。我们展示了使用人类视觉系统与自适应计算成像方案相结合对隐藏场景进行重影成像。这是通过投影图案“雕刻”技术实现的,该技术依靠大脑的实时反馈来修改光投影仪上的图案,从而实现更高效、更高分辨率的成像。这种脑机连接展示了一种增强人类计算的形式,未来可以扩展人类视觉的感知范围,并为研究人类感知的神经物理学提供新方法。作为一个例子,我们说明了一个简单的实验,其中图像重建质量受到同时有意识地处理和读取感知到的光强度的影响。