液体活检是一种微创手术,它使用体液采样来检测和表征癌症指纹。这在肿瘤学上具有很大的潜力,但是与适当处理液体活检样本的挑战相关,需要解决以在患者护理中实施此类分析。因此,在这项研究中,我们对手术治疗的HNSCC患者(n = 152)和健康志愿者(n = 56)进行了对分析前条件的优化和CFDNA分数(浓度,长度,完整性评分)的详细表征。与健康对照组相比,我们观察到患者的CFDNA浓度明显更高(P <0.0001)和肿瘤切除后CFDNA浓度的时间依赖性降低。我们的结果还显示,健康志愿者(p = 0.04)和HNSCC患者(p = 0.000002),CFDNA浓度随着年龄的增长而显着增加。此外,考虑到HNSCC位置的众多位置,我们表明CFDNA浓度缺乏差异,具体取决于解剖位置。此外,我们在随访期间出现了更高的CFDNA长度(范围35-10380和500–10380 bp)的趋势。总而言之,我们的研究提供了HNSCC患者和健康对照组中CFDNA分数的广泛表征。这些发现指出在临床实践中实施液体活检时需要考虑的几个方面,包括:(i)上皮再生所需的时间,以避免虚假升高的CFDNA水平,而不是因活性癌而产生的CFDNA水平,(ii)与核酸相关的年龄相关的核酸积累,而在CFDNA和III较高的(III)中的较小范围内,核酸的较小范围伴随着(III)较高的患者(III)较高(III)较高的时间(III)。肿瘤坏死。
对于复发性、晚期或转移性疾病,ECOG 评分为 0-1,且对 PD-1 或 PD-L1 抑制剂没有禁忌症,可与阿特珠单抗和卡铂联合用于非鳞状组织学,与卡铂和帕博利珠单抗联合用于鳞状组织学,或与 tremelimumab-actl、durvalumab 和卡铂联合使用。 对于复发性、晚期或转移性疾病,作为 PD-L1 表达肿瘤的一线治疗,这些肿瘤对可操作的分子生物标志物呈阴性,并且对 PD-1 或 PD-L1 抑制剂没有禁忌症,且体能状态为 0-2,与派姆单抗和卡铂联合用于鳞状组织学,与卡铂和阿特珠单抗联合用于非鳞状组织学,或与 tremelimumab-actl、durvalumab 和卡铂联合用于鳞状组织学。 治疗复发性、晚期或转移性疾病
结果:在正常人体组织中,与其他组织相比,SNAI1 在肺组织中明显高表达。然而,在 LUSC 中,其表达明显下调。SNAI1 mRNA 的高表达与较差的总生存期 (OS) 和无病生存期 (DFS) 相关。SNAI1 mRNA 的表达水平还与 LUSC 患者的年龄、肿瘤大小、淋巴结转移和远处转移有关。构建了列线图来预测 LUSC 患者的生存率。此外,LUSC 中 SNAI1 蛋白的高表达与预后不良有关。高表达组的 5 年生存率为 37%,低表达组的 59%。SNAI1 蛋白在 LUSC 组织细胞中的主要亚细胞定位是细胞核,但强蛋白表达也导致其定位在细胞质和膜中。基因集富集分析 (GSEA) 揭示了 LUSC 中 SNAI1 和 TP53 信号通路之间的相关性。SNAI1 可以与 TP53 相互作用,
摘要 头颈部鳞状细胞癌 (HNSCC) 由于诊断较晚、转移率高和治疗方案不佳而死亡率高。目前的治疗方法具有侵入性和侵略性,导致患者生活质量 (QoL) 严重下降。开发既有效又局部和/或有针对性的新型治疗方法以延长生存期并保持 QoL 至关重要。利多卡因是一种用于 HNSCC 手术的局部麻醉剂。利多卡因还能激活苦味 (味觉家族 2) 受体 14 (T2R14)。T2R 是 G 蛋白偶联受体 (GPCR),当被激活时会增加细胞内 Ca 2+。T2R 在粘膜上皮中表达,包括头部和颈部的内部区域,是可接触的药物靶点。在这里,我们表明利多卡因会增加几种 HNSCC 细胞系中的细胞内 Ca 2+ 并降低 cAMP。内质网释放的 Ca 2+ 导致线粒体吸收 Ca 2+。GPCR 抑制剂和 T2R14 拮抗剂 6-甲氧基黄烷酮可阻断 Ca 2+ 动员。利多卡因激活 T2R14 可使线粒体膜去极化、抑制细胞增殖并诱导细胞凋亡。利多卡因可激活 caspase-3 和 -7 裂解,并增加总 caspase 蛋白水平,尽管 mRNA 产生没有变化。即使在存在蛋白质合成抑制剂环己酰亚胺的情况下,总和裂解的 caspase 产物均上调。这表明泛素-蛋白酶体系统受到抑制。了解利多卡因在 HSNCC 中诱导的细胞凋亡对于利用其化疗效果作为治疗选择至关重要。此外,未来对 HNSCC 患者 T2R14 表达的研究可以为实施利多卡因作为靶向局部治疗提供参考。关键词:G 蛋白偶联受体、钙、环磷酸腺苷、麻醉剂、化学感应受体
协调中心:华盛顿大学医学院首席研究员:道格拉斯·R·阿德金斯(Douglas R. Adkins),医学博士电话:(314)362-4471电子邮件:dadkins@wustl.edu sub-Investigators机构机构Ravindra Uppaluri,M.D。,Ph.D。 Dana Farber癌症研究所耳鼻喉科Max Artyomov博士华盛顿大学病理学/免疫学丽贝卡·切诺克(Rebecca Chernock),医学博士华盛顿大学头部和颈部病理学Hiram Gay,医学博士 华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士 华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学头部和颈部病理学Hiram Gay,医学博士华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。华盛顿大学耳鼻喉科Randal Paniello,医学博士华盛顿大学耳鼻喉科Jay Piccirillo,医学博士华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684
Wnt3a,R-Spondin1和Noggin(WRN)调节培养基。15在简短的L-WRN(ATCC CRL-3276)细胞中,在10 cm板上培养了带有培养基(Dulbecco修改的Eagle的培养基[DMEM,Fisher],0.5 mg/ml G418(Thermofisher),0.5 mg/ml hygromycin b(Hygrofomycin B(Hygroforisher),1%的(生命),(life offermin),/strimies contrymin和1%(life ottercin),(thermofisher)的0.5 mg/mL G418(Thermofisher),/STRECTCILIN(LIFERCTIN),症状(Themerofisher),/症胎牛血清)。在10%的L-WRL细胞(ATCC,CRL-3276)中已在10 cm板中播种在培养基中(没有G418和Hygromycin B),将细胞孵育3-4天。当细胞为80%-90%汇合时,将培养基替换为10 mL新鲜培养基,并将细胞孵育24小时。收集培养基,以1000×g离心4分钟,通过0.22-PM无菌过滤器,并存储在-80°C下。将另外10毫升的新鲜培养基添加到板上并在24小时后收集,以使用相同的步骤使第二批条件培养基。在使用前将第一,第二和第三批条件介质混合在一起,以制备100%WRN条件介质。
• 充分利用AI,无需工人调整设备,提高制造工序的生产效率。特点1:高速推理:开发了AI控制技术,可与FA设备控制并行进行高速推理。特点2 :环境适应:学习运转过程中的状态量,适应不断变化的加工环境。特点三:高可靠性:对推理结果的可靠性进行指标化,实现高可靠的AI控制技术。
感谢联合国教科文组织世界科学知识与技术伦理委员会(COMEST)成员编写的《关于人工智能伦理可能的标准制定文书的初步研究》,以及特设专家组成员编写的《人工智能伦理建议书》初稿,3
缩写:AcCC,腺泡细胞癌;AdCC,腺样囊性癌;EOLP,糜烂性口腔扁平苔藓;F,冰冻;Fe,女性;FFPE,福尔马林固定石蜡包埋;FoM,口底;HNSCC,头颈部鳞状细胞癌;HPV,人乳头瘤病毒;M,男性;MEC,粘液表皮样癌;N,数量;NEOLP,非糜烂性口腔扁平苔藓;NR,未报告;OKC,口腔角化囊肿;OL,口腔白斑;OLP,口腔扁平苔藓;OP,口腔癌前病变;OPSCC,口咽鳞状细胞癌;OSCC,口腔鳞状细胞癌;PA,多形性腺瘤;PBMC,外周血单核细胞;R,范围;rOSCC,复发性口腔鳞状细胞癌; SGT,涎腺肿瘤;WA,沃辛瘤。
细胞每天都会经历内源性和外源性的DNA损伤。为了维持基因组的完整性并抑制肿瘤发生,个体在进化过程中获得了一系列修复功能,称为DNA损伤反应(DDR),以修复DNA损伤并确保遗传信息的准确传递。DNA损伤修复途径的缺陷可能导致各种疾病,包括肿瘤。越来越多的证据表明,DDR相关基因的改变,例如体细胞或种系突变、单核苷酸多态性(SNP)和启动子甲基化,与头颈部鳞状细胞癌(HNSCC)的发生、发展和治疗密切相关。尽管最近在手术联合放疗、化疗或免疫治疗方面取得了进展,但HNSCC患者的生存率并没有实质性的提高。因此,针对DNA修复途径可能是治疗HNSCC的一种有前途的方法。在这篇综述中,我们总结了DNA损伤的来源和DNA损伤修复途径。此外,还重点关注了DNA损伤修复通路在HNSCC发展中的作用以及针对这些通路的小分子抑制剂在HNSCC治疗中的应用。