。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 1 日发布。;https://doi.org/10.1101/2024.12.31.630865 doi:bioRxiv 预印本
病毒载体研究指南:黄病毒载体 黄病毒(黄病毒科)是有包膜的正义单链 RNA 病毒,通常通过昆虫媒介在脊椎动物宿主之间传播。一些病毒也被发现在子宫内或通过母乳从母亲到后代进行垂直传播,尤其是寨卡病毒的性传播令人担忧。黄病毒基因组由一个长的开放阅读框组成,该阅读框编码结构蛋白和非结构蛋白。进入细胞质后,病毒 RNA 可以作为 mRNA 并翻译成一个长的多聚蛋白,该多聚蛋白被细胞和病毒蛋白酶切割成单个蛋白质。因此,基于黄病毒的病毒载体需要将异源基因插入病毒编码区框架内,并由蛋白酶切割位点连接。通过用目标异源基因替换结构蛋白基因来生成复制缺陷型载体。作为替代方案,可以在内部核糖体进入位点序列的帮助下将基因插入非编码区。黄病毒和黄病毒载体在脊椎动物和无脊椎动物细胞中复制到中等滴度(在某些情况下大于 1x10 8 颗粒形成单位/毫升)。脊椎动物细胞的感染通常是溶解性的,尽管需要几天到一周的时间才能识别出细胞病变效应。昆虫细胞的感染是持续性的。黄病毒复制发生在细胞质中,因此黄病毒载体适合在靶细胞中瞬时表达感兴趣的基因。潜在的健康危害人类感染黄病毒通常是亚临床的,但也可能表现为轻度至重度的流感样症状。严重病例可能导致脑炎、肝炎和出血热,具体取决于病毒和先前的免疫力。其他病毒与先天畸形有关,包括受感染母亲所生儿童的小头畸形。传播方式 野生型黄病毒通常通过昆虫媒介在脊椎动物宿主之间传播,包括蚊子和蜱虫,具体取决于病毒。除了寨卡病毒外,尚未记录到直接的人际传播,寨卡病毒与性传播有关。人类可以作为某些黄病毒(如登革热病毒、寨卡病毒和黄热病病毒)的扩增宿主,并可在蚊子叮咬后感染蚊子。
实验在验尸后24小时内完成,这些健康细胞在单细胞转录组学实验中产生高质量的数据。这些血管细胞可以进行培养,转移和扩展,以进行许多体外测定,包括矩阵血管管形成,微流体腔室和代谢测量。在这些培养条件下,初级血管细胞至少三周保持细胞类型标记的表达。最后,我们描述了如何使用原代血管细胞将其移植到皮质器官中,该细胞捕获了产前人脑发育中神经血管相互作用的关键特征。就时间,组织加工和染色而言,大约需要3个小时,然后再花费3个小时的FACS。原发性FACS纯化的血管细胞中的移植程序需要额外2小时。不同的转录组和表观基因组协议所需的时间可能会根据特定应用而有所不同,我们提供了减轻批处理效果和优化数据质量的策略。总的来说,这种以Vasculo为中心的方法提供了一个综合平台来询问神经血管相互作用和人脑血管发育。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年5月8日发布。 https://doi.org/10.1101/2023.05.07.539594 doi:biorxiv Preprint
黄病毒属包括几种人类致病病毒,例如登革热、黄热病、寨卡病毒、日本脑炎病毒和西尼罗病毒,它们可以在节肢动物(蚊子)中垂直传播。已经设计了几种旨在摧毁蚊子总体数量的干预措施。但从长远来看,这些措施可能会产生严重的生态影响。这一限制要求制定更好、更安全的策略,这些策略需要对黄病毒-宿主相互作用有基本的了解。我们希望应用全基因组 CRISPR 筛选来解码伊蚊宿主的泛黄病毒因子。
载体传播的黄病毒和人畜共患病的冠状病毒是重要的人类病原体,对全球公共卫生构成了严重威胁。黄病毒,在那里它们被节肢动物载体传播,每年引起数百万个感染。虽然大多数感染是轻度或无症状的,但登革热和黄热病病毒(如黄热病病毒)可能会引起潜在的致命性出血热和休克综合征。神经性黄病毒,例如西尼罗河,日本脑炎和tick虫脑炎(TBEV)会导致具有长期症状的脑膜脑炎。冠状病毒,尤其是SARS(2003)和MERS(2012)(2012年)(2012年)的人畜共患病毒,如2000年代初期一直在定期出现。最新的例子是SARS-COV-2,它在中国城市武汉引起了一系列感染后,遍布全世界,目前造成超过690万人死亡。尽管在SARS-COV-2的情况下,疫苗对于预防感染或严重疾病和住院是至关重要的,但抗病毒药是一种非常有价值的工具,可用于治疗和预防当前和未来的黄病毒和冠状病毒感染。在本文中提出的工作中,我们使用了硅和体外技术的组合来识别和测试病毒蛋白酶潜在抑制剂的活性。在我们的第一项研究(论文1)中,我们意外地鉴定出具有对ZIKV NS2B-NS3蛋白酶的体外活性的HIV蛋白酶抑制剂。Covid-19爆发后,我们将注意力转移到SARS-COV-2上。通过虚拟筛选已知蛋白酶抑制剂的库来鉴定抑制剂,该抑制剂通过分子动力学模拟评估,并最终使用基于FRET的酶促测定法对重组ZIKV蛋白酶进行了测试。还使用了分子对接和分子动力学模拟的相同组合来正确预测已知的泛氟韦蛋白酶抑制剂对TBEV蛋白酶的活性(论文2)。结果,我们是第一个报告基于肽的化合物,具有对TBEV的体外活性。我们首先测试了广谱抗病毒一氧化氮(NO)的抑制作用,并发现无释放的化合物快照对基于细胞的测定中的SARS-COV-2复制具有剂量依赖性抑制作用(论文3)。我们推测SNAP可以通过对SARS-COV-2主要蛋白酶的催化Cys145的反硝化来抑制SARS-COV-2蛋白酶,并发现SNAP对体外酶试验中的重组SARS-COV-2 MPRO蛋白酶具有剂量依赖性抑制作用。在我们的最后一项研究(论文4)中,我们通过对含有42亿种化合物的DNA编码的化学文库的亲和力筛选来确定一类新的有效SARS-COV-2蛋白酶抑制剂。所鉴定的化合物抑制了IC50低至25 nm的重组SARS-COV-2蛋白酶,并且在感染的CALU-3和CACO-2细胞系中低微摩尔范围内的剂量依赖性抗病毒作用。
自 2015 年发现寨卡病毒 (ZIKV) 与胎儿小头畸形之间存在联系以来,导致数千名婴儿出生时患有神经发育缺陷,无脊椎动物传播的虫媒病毒,包括蚊子传播的黄病毒,一直备受关注。我们最近的研究 (Piontkivska et al. 2017) 表明,RNA 编辑,特别是由作用于 RNA 的腺苷脱氨酶 (ADAR) 基因家族成员催化的腺苷到肌苷脱氨,在 ZIKV 的分子进化中发挥作用,可能是干扰素调节的抗病毒反应的一部分。然而,由于 ADAR 在神经转录组多样化中的双重作用,ADAR 介导的编辑也有可能影响关键宿主神经蛋白的表达和功能 (Piontkivska et al. 2019)。这反过来可能解释与许多虫媒病毒感染(包括西尼罗河病毒 (WNV) 感染)相关的神经系统症状的广度和严重程度。在这里,我们使用公开的完整 WNV 多聚蛋白序列来检查 ADAR 编辑的足迹。我们的结果表明,与 ZIKV 基因组类似,WNV 基因组反映了 ADAR 编辑的特征,这是作用于病毒基因组的进化力量之一,例如,表现为保守位点中 ADAR 抗性位点的比例高于具有核苷酸多态性的位点。这些结果进一步扩展了我们之前关于 ADAR 编辑作为 RNA 病毒的突变和进化力量的发现,并深入了解了病毒神经毒性和神经侵入性黄病毒感染引起的神经退行性背后的潜在机制。
• 科:黄病毒科;黄病毒属。• 形态:有包膜的球形颗粒,直径 40-60 纳米,具有二十面体核衣壳对称性和表面突起;病毒体含有三种结构蛋白:C(衣壳)、E(主要包膜蛋白)和 M(膜),并产生七种非结构蛋白。M 蛋白是病毒成熟过程中产生的前体 (pr)M 蛋白的小蛋白水解片段。黄热病毒有一种血清型,与七种基因型有关。• 核酸:线性、正义、单链 RNA,长 11 kb • 物理化学特性:在 >56°C 下加热 10 分钟灭活;37°C 下半衰期为 7 小时;对脂质溶剂、去垢剂、乙醚、胰蛋白酶、氯仿、甲醛和β-丙内酯敏感;暴露于辐射后传染性降低,在pH 1 – 3时失活。
La Jolla免疫学研究所的研究人员正在探索针对四种登革热病毒(DENV)血清型和Zika病毒(ZIKV)生产泛氟病毒疫苗的方法,从而激发了稳健的抗体和T细胞反应。所提出的六价疫苗将由MRNA组成,该mRNA编码来自每种DENV血清型和ZIKV的两个结构蛋白的串联序列以及编码来自所有四个DENV血清型和ZIKV的保守的非结构性蛋白质区域的mRNA。DENV领域一直将疫苗开发工作集中在诱导体液免疫方面,因为DENV特定抗体(ABS)被认为是保护自然感染的关键机制。但是,ABS可以在保护和发病机理中起双重作用。相关小鼠模型的研究表明,通过介导AB依赖性增强(ADE)感染,ABS在DENV发病机理中的直接作用。此外,唯一有执照的DENV疫苗在Dengvaxia®上的流行病学研究和III期临床试验数据支持ADE在DENV发病机理中的作用。除了ABS外,LJI研究人员的小鼠模型研究表明,病毒特异性和反应性CD8 T细胞都可以预防DENV。基于初步研究,他们预测,除了强大的AB反应外,除了具有较高幅度,广度和多功能能力的抗原特异性CD8 T细胞反应介导了对黄病毒的有效免疫力。 因此,他们计划测试各种组合物和治疗策略,以开发针对DENV和ZIKV的疫苗,该疫苗既产生最佳的CD8 T细胞反应和AB反应。基于初步研究,他们预测,除了强大的AB反应外,除了具有较高幅度,广度和多功能能力的抗原特异性CD8 T细胞反应介导了对黄病毒的有效免疫力。因此,他们计划测试各种组合物和治疗策略,以开发针对DENV和ZIKV的疫苗,该疫苗既产生最佳的CD8 T细胞反应和AB反应。
摘要:慢病毒载体是疫苗接种最有效的病毒载体之一。与参考腺病毒载体形成鲜明对比的是,慢病毒载体在体内转导树突状细胞方面具有很高的潜力。在这些细胞中,慢病毒载体最能有效地激活幼稚 T 细胞,它们诱导转基因抗原的内源性表达,这些抗原可直接进入抗原呈递途径,而无需外部抗原捕获或交叉呈递。慢病毒载体可诱导强大、强劲和持久的体液、CD8 + T 细胞免疫力,并有效预防多种传染病。人类群体对慢病毒载体没有预先存在的免疫力,这些载体的促炎特性非常低,为它们在粘膜疫苗接种中的应用铺平了道路。在这篇综述中,我们主要总结了慢病毒载体的免疫学方面、它们最近诱导 CD4 + T 细胞的优化,以及我们最近在临床前模型中使用慢病毒载体进行疫苗接种的数据,包括预防黄病毒、SARS-CoV-2 和结核分枝杆菌。