西红柿是蛋白质、矿物质、维生素和必需氨基酸最廉价、最容易获取的储存库(Stephen et al., 2014),含有丰富的抗氧化剂和生物活性化合物,如酚类、黄酮类、β-胡萝卜素和番茄红素,可作为对抗病原体的内源性防御机制(Simova-Stoilova et al., 2006; Bhowong et al., 2009; Pinela et al., 2012)。成熟西红柿中含有的番茄红素是一种抗氧化剂,可以抵御致癌成分。类胡萝卜素番茄红素是最重要的抗氧化剂之一,与降低多种癌症和心脏病的风险有关(Adeniyi and Ademoyegun, 2012)。研究发现,与使用传统肥料种植的番茄相比,有机种植的番茄对营养成分有显著影响 (Shankar 等人,2012)。多项研究表明,有机农业可以改善水果和蔬菜的营养特性 (Luthria 等人,2010)。相关研究表明,与传统种植的番茄汤相比,有机番茄汁含有更多的酚类物质和亲水性抗氧化剂 (Vallverdu 等人,2012)。有机肥料的使用在确保生产的可持续性方面发挥着重要作用,可以保护当前和后代的原始供应,同时提供高质量和更长的保质期 (Rembia ł kowska,2007)。向土壤中添加有机肥可以增强微生物活性,提高其保存肥料的能力,最终提高肥力和肥料利用率 (Nanwai 等人,1998)。大量可用的有机物质,例如农家肥、家禽粪便和泥炭肥料,应被视为替代且经济的肥料来源。此外,有机肥料可以作为土壤中微生物的能量来源,从而改善土壤成分和植物生长。为了减少天然岩石肥料对环境的不良影响,以及由于番茄果实的营养价值而导致消费者对番茄果实的需求不断增加,科学家和种植者纷纷开发满足延长保质期要求的方法。本研究旨在评估形态生理生化特性、有机无机营养源的影响,并确定保质期最好的番茄品种。
摘要:天然产物因其多样的化学结构和生物活性而被证明是有前途的抗癌剂。本综述探讨了它们在癌症治疗中的核心作用,重点介绍了它们的作用机制和治疗益处。药用植物含有生物活性化合物,如黄酮类化合物、生物碱、萜类化合物和多酚,它们具有各种抗癌特性。这些化合物诱导细胞凋亡、抑制细胞增殖和细胞周期进程、干扰微管形成、作用于拓扑异构酶靶标、抑制血管生成、调节关键信号通路、改善肿瘤微环境、逆转耐药性和激活免疫细胞。草药抗癌药物具有治疗优势,特别是对癌细胞的选择性毒性,减少了与常规化疗相关的不良副作用。最近的研究和临床试验强调了草药在减轻副作用、提高化疗耐受性和与常规治疗产生协同作用方面的好处。例如,草药 SH003 被发现在治疗实体癌方面是安全且可能有效的,而褐藻糖胶则表现出对晚期癌症患者有益的抗炎特性。目前,草药抗癌剂的研究领域非常广泛。许多研究和临床试验正在研究它们在肺癌、前列腺癌、乳腺癌和肝细胞癌等各种癌症中的疗效、安全性和作用机制。有希望的发展包括多药理学方法、联合疗法、免疫调节和生活质量的改善。然而,天然产物作为抗癌药物的开发和使用仍然存在挑战,例如需要进一步研究其作用机制、可能的药物相互作用和最佳剂量。标准化草药提取物、提高生物利用度和递送以及克服监管和接受障碍是需要解决的关键问题。尽管如此,天然产物的良好抗癌作用和治疗益处值得进一步研究和开发。多学科合作对于推进草药癌症治疗并将这些药物整合到主流癌症治疗中至关重要。关键词:草药、抗癌、化疗、癌症治疗、耐药性
微生物纳米技术,即微生物驱动的纳米生物技术,是微生物技术领域的一个新兴领域,它利用了生物技术过程。微生物的生物勘探可以生产大量不同的纳米级材料,例如有机纳米材料、金属及其氧化物纳米材料等。(Verma 等人,2022 年)。与化学、物理和物理化学方法等替代合成途径相比,微生物纳米工厂路线采用绿色简便的方法来生产生物纳米材料。微生物纳米材料具有功能化的生物活性基团,可在纳米级上提高稳定性和功能性。这些微生物纳米产品主要用作坚固的载体,用于完整地递送/利用生物活性成分,以用于从农业食品到制药行业的定制应用(Chamundeeswari 等人,2019 年)。微生物纳米材料已被用于净化环境有毒物质,通过生物催化将工业废水中产生的有害污染物降解为无害的副产品 ( Verma, 2017 ; Verma et al., 2020 )。因此,微生物纳米生物技术具有广泛的应用范围,构成了微生物纳米制造中一种经济高效的方法,并可能在不久的将来为社会带来巨大的利润。随着绿色纳米技术的出现,重金属和致病菌对可持续水产养殖业的影响可以降到最低。在这方面,Saad 等人利用枯草芽孢杆菌 AS12 开发了一种生产 77 纳米大小的硒纳米颗粒的有效方法。通过细菌介导的硒纳米粒子生物合成,富含功能性生物活性成分(即黄酮类化合物和次生代谢物)的细菌悬浮液提供了纳米粒子在形状和大小方面的稳定性。这些纳米粒子针对尼罗罗非鱼(Oreochromis niloticus)中两种重金属(Cd 和 Hg)的积累和致病细菌嗜水气单胞菌负荷进行了测试。进一步的作者建议,生物源硒纳米粒子可能非常适合用于污染水,以最大限度地减少致病微生物和重金属的副作用;从而提高水产养殖业的生产力。
炎症是对不同刺激的复杂,自然的保护反应,其特征是血管扩张和渗透,而血管中的白细胞激增。目前的治疗方法涉及使用抗炎药,皮质类固醇和非甾体类抗炎药(NSAID),这些药物与不良副作用有关,尤其是胃肠道溃疡。因此,越来越需要探索药用植物的替代来源。在本研究中,我们研究了使用体内和硅分子对接的肯尼亚叶子叶片叶片的抗炎活性。基于DNA条形码进行植物样品的分子鉴定。粗提物,并分别使用Folin-Ciocalteu和氯化氯化铝colori公制方法对总酚类和类黄酮进行了初步鉴定。carlageenan诱导的PAW水肿的经典模型用于测试提取物的体内抗炎活性。使用激光拉曼光谱和液相色谱质谱法(LC-MS)筛选提取物,以及通过分子停靠物进行的环氧酶-2(COX-2)的结合位点所鉴定的化合物之间的分子相互作用,该化合物是通过分子停靠物进行的,作为In Vivo实验的确认工具。基于DNA条形码分析,将植物样品鉴定为尿布种。水提取物显着(p <0.05)减少了炎症的角叉菜胶模型中的爪水肿。这些发现暗示了尿布sp。水和甲醇的总酚类含量:二氯甲烷提取物为3.75 mg食酸等效物(GAE)/G干燥样品和6.26 mg GAE/G干燥样品,而总黄酮类含量为0.3872 mg槲皮素/g干样样品和1.76 mg quercetin/g dryplice/g drame cribetin/g drame含量。LC-MS证实了19种植物化学物质的存在,其中10和9是酚类和类黄酮化合物。与这些鉴定的化合物槲皮素与COX-2复合时达到了最低的结合能,其次是鼠李糖蛋白,Quer cetin rhamnoside,epigallocatechin Gallate和氯酸酸。分子对接研究支持了体内发现,并确认了尿布sp的抗炎潜力。是可以在
痴呆症目前仍然是一个全球性的健康问题,全球估计有5520万人患有痴呆症。最常见的痴呆症类型之一是阿尔茨海默病,因为它占痴呆症病例的 60-80%。日惹是印度尼西亚阿尔茨海默病发病率最高的地区。阿尔茨海默病是一种渐进性的神经退行性疾病,由大脑中形成β-淀粉样斑块引起,会破坏神经系统。根据胆碱能理论,斑块的形成是由于酶乙酰胆碱酯酶 (AChE) 的存在。通过药物治疗方法,抑制AChE酶可以改善认知功能并抑制阿尔茨海默病的进展。同时,抗氧化活性也被证明可以预防阿尔茨海默病。沉香叶(Aquilaria malaccensis Lamk.)是一种富含酚类化合物的植物,具有很强的抗氧化活性。然而,并非所有的酚类化合物都能被人体消化,因此需要通过发酵进行简化。研究表明,将沉香茶制成康普茶可以使其中的酚类含量比普通沉香叶茶中的酚类含量高出两倍。然而,沉香叶康普茶作为阿尔茨海默病替代疗法的抗氧化和乙酰胆碱酯酶抑制剂活性尚未被研究过。基于此,本研究旨在通过薄层色谱(TLC)和气相色谱-质谱(GC-MS)分析测试沉香叶茶康普茶的抗氧化活性、乙酰胆碱酯酶抑制剂和植物化学成分。该研究的阶段包括沉香叶的准备、康普茶发酵、感官测试、抗氧化剂测试、乙酰胆碱酯酶抑制测试和植物化学概况(薄层色谱法和气相色谱-质谱法)。本研究结果表明,沉香叶康普茶提取物具有不同的抗氧化活性,抗氧化活性最好的是康普茶发酵7天的乙酸乙酯提取物,IC50值为2.68µg/mL。沉香叶茶的康普茶提取物通过将癸酸乙酯化合物与 4M0E 蛋白结合,在计算机中具有 AChE 抑制活性。沉香叶康普茶乙酸乙酯提取物的植物化学概况表明,薄层色谱试验中存在黄酮类和酚类化合物,而 GC-MS 试验表明,角鲨烯是提取物中检测到的面积百分比最高的化合物。
18. Shaito、A.*、H. Hasan、KJ Habashy、W. Fakih、S. Abdelhady、F. Ahmad、K. Zibara、AH Eid、AF El-Yazbi 和 FH Kobeissy。 “西方饮食加剧创伤后脑损伤的神经元损伤:相互作用的可能途径。” EBioMedicine,卷57,2020,页102829,doi:10.1016/j.ebiom.2020.102829。 * 第一作者。如果= 5.736。 19. Maha Tabet、Samar Abdelhady、Nour Al Huda Shaito、Marya El-Kurdi、Hiba Hasan、Reem Abedi、Nawara Osman、Riyad El-Khoury、Abdullah Shaito*、Firas H Kobeissy*。 “脑损伤中的线粒体:抗氧化剂来救援!”正面。 Young Minds,2020 年,DOI:10.3389/frym.2020.510817。 * 通讯作者。 20. Hiba Hasan、Maha Tabet、Samar Abdelhady、Sarah Halabi、Karl John Habashy、Firas H Kobeissy*、Abdullah Shaito*。 “创伤性脑损伤中的神经发生和神经退行性之间的拉锯战。” Frontiers Young Minds,2020 年。 DOI: 10.3389/frym.2020.00119。 * 通讯作者。 21. Fatimah Ahmad, Hiba Hasan, Samar Abdelhady, Walaa Fakih, Nawara Osman, Abdullah Shaito * , Firas Kobeissy. “健康膳食快乐大脑:饮食如何影响大脑功能?” Frontiers Young Minds,2021 年。 9:578214。 doi: 10.3389/frym.2021.578214。 * 通讯作者 22. Ghareghani, M., A. Ghanbari, A. Eid, A. Shaito, W. Mohamed, S. Mondello 和 K. Zibara。 “实验性自身免疫性脑脊髓炎 (Eae) 动物模型中的激素。”翻译神经科学,卷12,没有。 1,2021,页164-189,doi:10.1515/tnsci-2020-0169。 23. Tanios J、Al-Halabi S、Hasan H、Abdelhady S、Saliba J、Shaito A* 和 Kobeissy F。”组织工程在创伤性脑损伤中的应用”,2021年。前沿。年轻的心灵。九:514428。 doi: 10.3389/frym.2020.514428。 * 通讯作者。 24. Haidar MA、Shakkour Z、Reslan MA、Al-Haj N、Chamoun P、Habashy K、Kaafarani H、Shahjouei S、Farran SH、Shaito A 等。 2022.SARS-CoV-2 参与中枢神经系统组织损伤。神经再生研究。 17(6):1228-1239。英语25.Slika H、Mansour H、Wehbe N、Nasser SA、Iratni R、Nasrallah G、Shaito A、Ghaddar T、Kobeissy F、Eid AH。 2022.黄酮类化合物在癌症中的治疗潜力:ROS 介导的机制。生物医学药物治疗。 146:112442。英语26. Tabet M、El-Kurdi M、Haidar MA、Nasrallah L、Reslan MA、Shear D、Pandya JD、El-Yazbi AF、Sabra M、Mondello S 等人。 2022. 米托醌补充剂可减轻慢性时间点重复性轻度创伤性脑损伤后的氧化应激和病理结果。神经学实验。 351:113987。英语27. Zebian A、El-Dor M、Shaito A、Mazurier F、Rezvani HR、Zibara K. 2022. XPC 在 DNA 损伤修复之外的多方面作用:p53 依赖性和 p53 非依赖性